Human-body communication (HBC) has increasingly gained attention from academia and industry. Most current works focus on characterizing the use of human-body tissues as a physical medium to enable reliable communication. However, designing coupling hardware and communication circuits for reliable data transmission (e.g., high throughput and low latency) is a demanding task, especially for achieving a compact full electronic implementation. For this purpose, there are few commercial devices, mainly differential probes and balun transformers, employed with electrical analysis instruments such as oscilloscopes and vector network analyzers. Although these devices are widely used, they are expensive and are difficult to miniaturize and integrate into real-world HBC-specific applications (e.g., data security). This article presents a low-cost electronic system that transfers collected data using a secondary channel: the ionic environment (the primary channel would be the wireless environment). We design an electronic system as an experimental setup for studying HBC, allowing the communication between instruments, sensors, and actuators by human-body tissues. The experimental evaluation of the proposed system follows (i) a phantom composed of saline (0.9%) and (ii) a real human forearm through adhesive surface electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.