Background Fascioliasis is an important parasitic disease. In the northern region of Brazil, a human parasite infection has been reported through a coprological survey. Eggs of Fasciola hepatica were found in fecal samples of 11 individuals. Knowledge of the infection in animals or the presence of snails is necessary to address the possibility of the parasite cycle occurrence in that region. The aim of this study was to describe the transmission of human fascioliasis in Canutama, Amazonas, in Western Amazonia, Brazil. Methods Serological (ELISA and Western Blot, WB) and parasitological analyses were carried out in humans. In addition, the presence of the intermediate snail host within the community was examined. Results A total of 434 human samples were included in the study, of which 36 (8.3%) were reactive by ELISA and 8 (1.8%) were reactive by WB. Fasciola hepatica eggs were found in one human sample. The occurrence of the intermediated host was recorded and 31/43 specimens were identified as Lymnaea columella. Conclusion. Canutama constitutes a focus of transmission of human fascioliasis. This study describes the first serological survey for human fascioliasis, as well as its simultaneous occurrence in human hosts and possible intermediates performed in northern Brazil.
As one of the most successful invasive land snail species, Achatina (Lissachatina) fulica Bowdich, 1822 has achieved wide global distribution, particularly in (sub)tropical regions, with further dispersal likely due to climate change. This species of giant African snails (up to 17 cm shell length) is a pest that has extensive negative impact on agriculture and can serve as vector for several parasites, including Angiostrongylus cantonensis, a nematode parasite that causes (human) eosinophilic meningitis, an emergent disease. Investigation showed that A. cantonensis infection negatively impacts the metabolism of A. fulica by depleting polysaccharide stores of the intermediate host, compromising the energy balance of the snail. A review of the literature indicates that A. fulica possesses potent innate type immune defenses to counter infection, including phagocytic hemocytes capable of deploying reactive oxygen species and lectins for non-self recognition, a serine protease-dependent coagulation response (not observed in other taxa of gastropods), as well as antimicrobial proteins including achacin, an antimicrobial protein. A recent chromosome level genome assembly will facilitate progressively detailed characterization of these immune features of A. fulica. We strongly encourage further immunological studies of A. fulica, ranging from organismal level to molecular biology to gain better understanding of the A. fulica internal defense response to nematode pathogens like A. cantonensis and the contribution of immune function to the invasiveness of (snail) species. Characterization of immunity of A. fulica, representing the understudied Stylommatophora (panpulmonate landsnails) will also broaden the comparative immunology of Gastropoda.
Highlights► The giant African snail Achatina fulica, the most widely distributed invasive pest land snail, will likely disperse further with climate change. ► Achatina fulica is intermediate host for the nematode Angiostrongylus cantonensis that causes eosinophilic meningitis. ► Study of metabolic and immunological aspects of this parasite host provide better understanding of epidemiology and inform on comparative immunology of gastropods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.