The reduction of NO(•) to HNO/NO(-) under biologically compatible conditions has always been thought as unlikely, mostly because of the negative reduction potential: E°(NO(•),H(+)/HNO) = -0.55 V vs NHE at physiological pH. Nonetheless, during the past decade, several works hinted at the possible NO-to-HNO conversion mediated by moderate biological reductants. Very recently, we have shown that the reaction of NO(•) with ascorbate and aromatic alcohols occurs through a proton-coupled nucleophilic attack (PCNA) of the alcohol to NO(•), yielding an intermediate RO-N(H)O(•) species, which further decomposes to release HNO. For the present work, we decided to inspect whether other common biological aromatic alcohols obtained from foods, such as Vitamin E, or used as over-the-counter drugs, like aspirin, are able to undergo the reaction. The positive results suggest that the conversion of NO to HNO could occur far more commonly than previously expected. Taking these as the starting point, we set to review our and other groups' previous reports on the possible NO-to-HNO conversion mediated by biological compounds including phenolic drugs and vitamins, as well as several thiol-bearing compounds. Analysis of revised data prompted us to ask ourselves the following key questions: What are the most likely physio/pathological conditions for NO(•)-to-HNO conversion to take place? Which effects usually attributed to NO(•) are indeed mediated by HNO? These inquiries are discussed in the context of 2 decades of NO and HNO research.
An experimental approach to chemistry is a more meaningful way to learn than the use of textbooks alone. Working in the laboratory helps students understand basic concepts through their active engagement. Here, we present a series of inexpensive and environmentally friendly laboratory exercises on acid–base equilibrium. Their difficulty level is low, and they can be performed at home. Thus, they are especially suited for teaching in a social-distance context, such as during the COVID-19 pandemic. The experiments were designed to exemplify the main concepts of acid–base equilibrium, buffer capacity, and titration curves, using safe household reactants and no special equipment. RGB image analysis is used to detect pH variation and follow experiments’ progress. Titration of sodium carbonate with acetic acid using curcumin and red cabbage extracts as indicators is described. Our results show that curcumin extract is an excellent indicator for this purpose, and the end point is clearly observed through image analysis. These assays can be used and further adapted to teach students of different ages and socioeconomic backgrounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.