SummaryLegume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture.
SummaryIn animals, organic cation/carnitine transporters (OCTs) are involved in homeostasis and distribution of various small endogenous amines (e.g. carnitine, choline) and detoxification of xenobiotics such as nicotine. Here, we describe the characterization of AtOCT1, an Arabidopsis protein that shares most of the conserved features of mammalian plasma membrane OCTs. Transient expression of an AtOCT1::GFP fusion protein in onion epidermal cells and Arabidopsis protoplasts supported localization in the plasmalemma. AtOCT1 functionally complemented the Dcit2/Dagp2p yeast strain that is defective in plasma membrane carnitine transport. Disruption of AtOCT1 in an Arabidopsis oct1-1 knockout mutant affected both the expression of carnitine-related genes and the developmental defects induced by exogenous carnitine. RT-PCR and promoteruidA fusion analysis showed that AtOCT1 was expressed in vascular tissues of various organs and at sites of lateral root formation. Correlating with this expression pattern, oct1-1 seedlings grown in vitro exhibited a higher degree of root branching than the wild-type, showing that the disruption of AtOCT1 affected root development under certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.