BackgroundBrain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown.ResultsGenome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition.ConclusionsOur results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0659-4) contains supplementary material, which is available to authorized users.
IMPORTANCE Early-life epilepsies are often a consequence of numerous neurodevelopmental disorders, most of which are proving to have genetic origins. The role of genetic testing in the initial evaluation of these epilepsies is not established.OBJECTIVE To provide a contemporary account of the patterns of use and diagnostic yield of genetic testing for early-life epilepsies. DESIGN, SETTING, AND PARTICIPANTSIn this prospective cohort, children with newly diagnosed epilepsy with an onset at less than 3 years of age were recruited from March 1, 2012, to April 30, 2015, from 17 US pediatric hospitals and followed up for 1 year. Of 795 families approached, 775 agreed to participate. Clinical diagnosis of the etiology of epilepsy were characterized based on information available before genetic testing was performed. Added contributions of cytogenetic and gene sequencing investigations were determined.EXPOSURES Genetic diagnostic testing. MAIN OUTCOMES AND MEASURES Laboratory-confirmed pathogenic variant.RESULTS Of the 775 patients in the study (367 girls and 408 boys; median age of onset, 7.5 months [interquartile range, 4.2-16.5 months]), 95 (12.3%) had acquired brain injuries. Of the remaining 680 patients, 327 (48.1%) underwent various forms of genetic testing, which identified pathogenic variants in 132 of 327 children (40.4%; 95% CI, 37%-44%): 26 of 59 (44.1%) with karyotyping, 32 of 188 (17.0%) with microarrays, 31 of 114 (27.2%) with epilepsy panels, 11 of 33 (33.3%) with whole exomes, 4 of 20 (20.0%) with mitochondrial panels, and 28 of 94 (29.8%) with other tests. Forty-four variants were identified before initial epilepsy presentation. Apart from dysmorphic syndromes, pathogenic yields were highest for children with tuberous sclerosis complex (9 of 11 [81.8%]), metabolic diseases (11 of 14 [78.6%]), and brain malformations (20 of 61 [32.8%]). A total of 180 of 446 children (40.4%), whose etiology would have remained unknown without genetic testing, underwent some testing. Pathogenic variants were identified in 48 of 180 children (26.7%; 95% CI, 18%-34%). Diagnostic yields were greater than 15% regardless of delay, spasms, and young age. Yields were greater for epilepsy panels (28 of 96 [29.2%]; P < .001) and whole exomes (5 of 18 [27.8%]; P = .02) than for chromosomal microarray (8 of 101 [7.9%]).CONCLUSIONS AND RELEVANCE Genetic investigations, particularly broad sequencing methods, have high diagnostic yields in newly diagnosed early-life epilepsies regardless of key clinical features. Thorough genetic investigation emphasizing sequencing tests should be incorporated into the initial evaluation of newly presenting early-life epilepsies and not just reserved for those with severe presentations and poor outcomes.
Expansions of (CTG)·(CAG) repeated DNAs are the mutagenic cause of 14 neurological diseases, likely arising through the formation and processing of slipped-strand DNAs. These transient intermediates of repeat length mutations are formed by out-of-register mispairing of repeat units on complementary strands. The three-way slipped-DNA junction, at which the excess repeats slip out from the duplex, is a poorly understood feature common to these mutagenic intermediates. Here, we reveal that slipped junctions can assume a surprising number of interconverting conformations where the strand opposite the slip-out either is fully base paired or has one or two unpaired nucleotides. These unpaired nucleotides can also arise opposite either of the nonslipped junction arms. Junction conformation can affect binding by various structure-specific DNA repair proteins and can also alter correct nick-directed repair levels. Junctions that have the potential to contain unpaired nucleotides are repaired with a significantly higher efficiency than constrained fully paired junctions. Surprisingly, certain junction conformations are aberrantly repaired to expansion mutations: misdirection of repair to the non-nicked strand opposite the slip-out leads to integration of the excess slipped-out repeats rather than their excision. Thus, slipped-junction structure can determine whether repair attempts lead to correction or expansion mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.