Tomato (Solanum lycopersicum L.) is a climacteric fruit, i.e., during ripening an increase in ethylene synthesis and high rate of respiration are observed. Low oxygen levels might inhibit or block ethylene biosynthesis and therefore retard the ripening process. Despite commercial applications of low oxygen treatments, the precise mode of action of low oxygen in fruit tissues and ripening is not well understood. In order to delineate the molecular responses to low oxygen stress in fruits, hypoxia-responsive tomato genes encoding heat shock factors, heat shock proteins, and enzymes involved in fermentation and ethylene synthesis pathways were analyzed. In this study, tomato fruit stored under hypoxia conditions showed that HSP17.7 and HSP21 genes were highly induced by low oxygen level, indicating their primary role in maintaining cellular homeostasis after this stress.
Drought stress affects crop quality and productivity.The challenge of increasing food availability for a growing worldwide demand relies on the development of tolerant cultivars that will need to be adapted to arid and semi-arid areas. In order to help the understanding of rice response to stress, the phenotypic response of 6 Brazilian rice cultivars and 2 different crosses between them were characterized under drought conditions. Since gene regulation is an important part of root morphological responses to stressful conditions, 4 genes related to auxin response and root modifications (OsGNOM1/ CRL4, OsIAA1, OsCAND1 and OsRAA1) were evaluated. The expression of these genes was analyzed in stressed rice using public available show that all genotypes lengthened its roots in response to drought, specially the 2 hybrids. The expression of these genes is modified in response to stress, and OsRAA1 has a very special behavior, constituting a target for future studies. Further steps include the study of polymorphisms in these genotypes in order to understand if differences in these genes or in regulatory regions can be associated with differences in root system architecture and/or stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.