Eukaryotic organisms as well as some prokaryotes and viruses contain sphingolipids, which are defined by a common structural feature, i.e. , a "sphingoid base" backbone such as D-erythro-1,3-dihydroxy, 2-aminooctadec-4-ene (sphingosine). The sphingolipids of mammalian tissues, lipoproteins, and milk include ceramides, sphingomyelins, cerebrosides, gangliosides and sulfatides; plants, fungi and yeast have mainly cerebrosides and phosphoinositides. The total amounts of sphingolipids in food vary considerably, from a few micromoles per kilogram (fruits) to several millimoles per kilogram in rich sources such as dairy products, eggs and soybeans. With the use of the limited data available, per capita sphingolipid consumption in the United States can be estimated to be on the order of 150-180 mmol (approximately 115-140 g) per year, or 0.3-0.4 g/d. There is no known nutritional requirement for sphingolipids; nonetheless, they are hydrolyzed throughout the gastrointestinal tract to the same categories of metabolites (ceramides and sphingoid bases) that are used by cells to regulate growth, differentiation, apoptosis and other cellular functions. Studies with experimental animals have shown that feeding sphingolipids inhibits colon carcinogenesis, reduces serum LDL cholesterol and elevates HDL, suggesting that sphingolipids represent a "functional" constituent of food. Sphingolipid metabolism can also be modified by constituents of the diet, such as cholesterol, fatty acids and mycotoxins (fumonisins), with consequences for cell regulation and disease. Additional associations among diet, sphingolipids and health are certain to emerge as more is learned about these compounds.
Stroke is a major cause of long-term disability, the severity of which is directly related to the numbers of neurons that succumb to the ischemic insult. The signaling cascades activated by cerebral ischemia that may either promote or protect against neuronal death are not well understood. One injury-responsive signaling pathway that has recently been characterized in studies of non-neural cells involves cleavage of membrane sphingomyelin by acidic and/or neutral sphingomyelinase (ASMase) resulting in generation of the second messenger ceramide. We now report that transient focal cerebral ischemia induces large increases in ASMase activity, ceramide levels, and production of inflammatory cytokines in wild-type mice, but not in mice lacking ASMase. The extent of brain tissue damage is decreased and behavioral outcome improved in mice lacking ASMase. Neurons lacking ASMase exhibit decreased vulnerability to excitotoxicity and hypoxia, which is associated with decreased levels of intracellular calcium and oxyradicals. Treatment of mice with a drug that inhibits ASMase activity and ceramide production reduces ischemic neuronal injury and improves behavioral outcome, suggesting that drugs that inhibit this signaling pathway may prove beneficial in stroke patients.
Recently it has been demonstrated that high density lipoprotein (HDL) binding to scavenger receptors, class B, type I (SR-BI) stimulates endothelial nitric-oxide synthase (eNOS) activity. In the present studies we used a Chinese hamster ovary cell system and a human microvascular endothelial cell line to confirm that HDL stimulates eNOS activity in a SR-BI-dependent manner. Importantly, we have extended these studies to examine the mechanism whereby HDL binding to SR-BI stimulates eNOS. In addition, C 2 -ceramide stimulated eNOS to the same extent as HDL, whereas C 2 -dihydroceramide did not stimulate eNOS. We conclude that HDL binding to SR-BI stimulates eNOS by increasing intracellular ceramide levels and is independent of an increase in intracellular calcium or Akt kinase phosphorylation.
Oxidized LDL (oxLDL) have been implicated in diverse biological events leading to the development of atherosclerotic lesions. We previously demonstrated that the proliferation of cultured vascular smooth muscle cells (SMC) induced by oxLDL is preceded by an increase in neutral sphingomyelinase activity, sphingomyelin turnover to ceramide, and stimulation of mitogen-activated protein kinases (Augé , N., EscargueilBlanc, I., Lajoie-Mazenc, I., Suc, I., Andrieu-Abadie, N., Pieraggi, M. T., Chatelut, M., Thiers, J. C., Jaffré zou, J. P., Laurent, G., Levade, T., Nè gre-Salvayre, A., and Salvayre, R. (1998) J. Biol. Chem. 273, 12893-12900). Since ceramide can be converted to other bioactive metabolites, such as the well established mitogen sphingosine 1-phosphate (S1P), we investigated whether additional ceramide metabolites are involved in the oxLDLinduced SMC proliferation. We report here that incubation of SMC with oxLDL increased the activities of both acidic and alkaline ceramidases as well as sphingosine kinase, and elevated cellular sphingosine and S1P. Furthermore, the mitogenic effect of oxLDL was inhibited by D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol and N,N-dimethylsphingosine which are inhibitors of ceramidase and sphingosine kinase, respectively. These findings suggest that S1P is a key mediator of the mitogenic effect of oxLDL. In agreement with this conclusion, exogenous addition of sphingosine stimulated the proliferation of cultured SMC, and this effect was abrogated by dimethylsphingosine but not by fumonisin B1, an inhibitor of the acylation of sphingosine to ceramide. Exogenous S1P also promoted SMC proliferation. Altogether, these results strongly suggest that the mitogenic effect of oxLDL in SMC involves the combined activation of sphingomyelinase(s), ceramidase(s), and sphingosine kinase, resulting in the turnover of sphingomyelin to a number of sphingolipid metabolites, of which at least S1P is critical for mitogenesis. Oxidized low density lipoproteins (LDL)1 are believed to play a critical role in atherosclerosis (1, 2). Oxidized LDL exert diverse biological effects on the different cell types, including smooth muscle cells (SMC), which are present in the atherosclerotic lesions (3). The responses of cultured SMC depend on the degree of oxidation and on the extracellular concentration of oxidized LDL, and include production of growth factors (3, 4), chemotaxis (5), and cell proliferation (6 -8) as well as induction of cytotoxicity (7, 9), all of which are considered to be key events in the development of atherosclerosis (3, 10).Oxidized LDL (oxLDL) induce the proliferation of cultured SMC (11, 12), which has recently been shown to be accompanied by the activation of a neutral, magnesium-independent sphingomyelinase that induces sphingomyelin (SM) hydrolysis and ceramide generation (13). Ceramide (N-acylsphingosine) belongs to the family of sphingolipids (14), and has recently emerged as an important signaling molecule that is involved in the regulation of cell growth, differentiatio...
Neutral sphingomyelinase (NSMase) has been proposed to mediate interleukin (IL)-1beta signaling in liver. In this paper, we used adenovirus-mediated gene transfer to inducibly express FLAG-tagged mouse NSMase-2 in primary rat hepatocytes in order to further elucidate the molecular nature of the NSMase involved. Initial studies confirmed that the EST clone used in these experiments encoded a Mg2+-dependent NSMase. The in vitro activity of the heterologously expressed enzyme was inhibited in the presence of 0.5% Triton or 50 mM EDTA. In addition, the expression of this NSMase-2 clone in primary hepatocytes led to increased cellular levels of ceramide, indicating that the enzyme is active in situ. Immunofluorescence studies in Hep G2 cells infected with NSMase-2 expressing adenoviruses showed that the FLAG-tagged NSMase-2 was localized to the plasma membrane. Cell viability remained unchanged 72 h following infection and induction. The effect of NSMase-2 expression on IL-1beta-induced activation of c-Jun N-terminal kinase (JNK) was tested. Expression of NSMase-2 increased JNK phosphorylation between 1.5- and 2-fold over the basal level. Furthermore, NSMase-2 was found to strongly increase the ability of IL-1beta to phosphorylate JNK. This potentiation was mediated by a phosphatase from the PP2A family, possibly by modulating the phosphorylation pattern of IL-1beta receptor-associated kinase (IRAK). In conclusion, the data presented suggest that NSMase-2 could be involved in IL-1beta-induced JNK activation in hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.