We report experimental results which show that the interfacial deformation around glass particles (radius, 200-300 microm) at an oil-water (or air-water) interface is dominated by an electric force, rather than by gravity. It turns out that this force, called for brevity "electrodipping," is independent of the electrolyte concentration in the water phase. The force is greater for oil-water than for air-water interfaces. Under our experimental conditions, it is due to charges at the particle-oil (instead of particle-water) boundary. The derived theoretical expressions, and the experiment, indicate that this electric force pushes the particles into water. To compute exactly the electric stresses, we solved numerically the electrostatic boundary problem, which reduces to a set of differential equations. Convenient analytical expressions are also derived. Both the experimental and the calculated meniscus profile, which are in excellent agreement, exhibit a logarithmic dependence at long distances. This gives rise to a long-range electric-field-induced capillary attraction between the particles, detected by other authors. Deviation from the logarithmic dependence is observed at short distances from the particle surface due to the electric pressure difference across the meniscus. The latter effect gives rise to an additional short-range contribution to the capillary interaction between two floating particles. The above conclusions are valid for either planar or spherical fluid interfaces, including emulsion drops. The electrodipping force, and the related long-range capillary attraction, can engender two-dimensional aggregation and self-assembly of colloidal particles. These effects could have implications for colloid science and the development of new materials.
Here, we investigate experimentally and theoretically the motion of spherical glass particles of radii 240-310 microm attached to a tetradecane-water interface. Pairs of particles, which are moving toward each other under the action of lateral capillary force, are observed by optical microscopy. The purpose is to check whether the particle electric charges influence the particle motion, and whether an electric-field-induced capillary attraction could be detected. The particles have been hydrophobized by using two different procedures, which allow one to prepare charged and uncharged particles. To quantify the hydrodynamic viscous effects, we developed a semiempirical quantitative approach, whose validity was verified by control experiments with uncharged particles. An appropriate trajectory function was defined, which should increase linearly with time if the particle motion is driven solely by the gravity-induced capillary force. The analysis of the experimental results evidences for the existence of an additional attraction between two like-charged particles at the oil-water interface. This attraction exceeds the direct electrostatic repulsion between the two particles and leads to a noticeable acceleration of their motion.
In a previous study, we established that the attraction between electrically charged particles attached to a water/tetradecane interface is stronger than predicted on the basis of the gravity-induced lateral capillary force. Here, our goal is to explain this effect. The investigated particles are hydrophobized glass spheres of radii between 240 and 320 microm. Their weight is large enough to deform the liquid interface. The interfacial deformation is considerably greater for charged particles because of the electrodipping force that pushes the particles toward the water phase. By independent experiments with particles placed between two electrodes, we confirmed the presence of electric charges at the particle/tetradecane interface. The theoretical analysis shows that if the distribution of these surface charges is isotropic, the meniscus produced by the particle electric field decays too fast with distance and cannot explain the experimental observations. However, if the surface-charge distribution is anisotropic, it induces a saddle-shaped deformation in the liquid interface around each particle. This deformation, which is equivalent to a capillary quadrupole, decays relatively slow. Its interference with the gravity-induced isotropic meniscus around the other particle gives rise to a long-range attractive capillary force, F approximately 1/L3 (L=interparticle distance). The obtained agreement between the experimental and theoretical curves, and the reasonable values of the parameters determined from the fits, indicate that the observed stronger attraction in the investigated system can be really explained as a hybrid interaction between gravity-induced "capillary charges" and electric-field-induced "capillary quadrupoles".
Here, we consider in detail the problem of the shape of the capillary meniscus around a charged colloidal particle, which is attached to a fluid interface: oil/water or air/water. The meniscus profile is influenced by the electric field created by charges at the particle/nonpolar fluid boundary. We digitized the coordinates of points from the meniscus around silanized glass spheres (200-300 mum in radius) attached to the tetradecane/water interface. The theoretical meniscus shape is computed in three different ways that give numerically coincident results. It is proven that for sufficiently small particles the meniscus profile can be expressed as a superposition of pure electric and gravitational deformations. Special attention is paid to the comparison of theory and experiment. A procedure for data processing is developed that allows one to obtain accurate values of the contact angle and surface charge density from the fit of the experimental meniscus profile. For all investigated particles, excellent agreement between theory and experiment is achieved. The results indicate that the electric field gives rise to an interfacial deformation of medium range and considerable amplitude.
Hydrophobins are proteins isolated from filamentous fungi, which are excellent foam stabilizers, unlike most of the proteins. In the present study, we demonstrate that hydrophobin HFBII can also serve as excellent emulsion stabilizer. The HFBII adsorption layers at the oil/water interface solidify similarly to those at the air/water interface. The thinning of aqueous films sandwiched between two oil phases ends with the formation of a 6 nm thick protein bilayer, just as in the case of foam films, which results in strong adhesive interactions between the emulsion drops. The drop-size distribution in hydrophobin stabilized oil-in-water emulsions is investigated at various protein concentrations and oil volume fractions. The data analysis indicates that the emulsification occurs in the Kolmogorov regime or in the regime of limited coalescence, depending on the experimental conditions. The emulsions with HFBII are very stable-no changes in the drop-size distributions are observed after storage for 50 days. However, these emulsions are unstable upon stirring, when they are subjected to the action of shear stresses. This instability can be removed by covering the drops with a second adsorption layer from a conventional protein, like β-lactoglobulin. The HFBII surface layer is able to suppress the Ostwald ripening in the case when the disperse phase is oil that exhibits a pronounced solubility in water. Hence, the hydrophobin can be used to stabilize microcapsules of fragrances, flavors, colors or preservatives due to its dense adsorption layers that block the transfer of oil molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.