Functional asymmetry has been reported in sympathetic ganglia. Although there are few studies reporting on body side-related morphoquantitative changes in sympathetic ganglion neurons, none of them have used design-based stereological methods to address this issue during post-natal development. We therefore aimed at detecting possible asymmetry-related effects on the quantitative structure of the superior cervical ganglion (SCG) from pacas during ageing, using very precise design-based stereological methods. Forty (twenty left and twenty right) SCG from twenty male pacas were studied at four different ages, i.e. newborn, young, adult and aged animals. By using design-based stereological methods the total volume of ganglion and the total number of mononucleate and binucleate neurons were estimated. Furthermore, the mean perikaryal volume of mononucleate and binucleate neurons was estimated, using the vertical nucleator. The main findings of this study were: (1) the right SCG from aged pacas has more mononucleate and binucleate neurons than the left SCG in all other combinations of body side and animal age, showing the effect of the interaction between asymmetry (right side) and animal age, and (2) right SCG neurons (mono and binucleate) are bigger than the left SCG neurons (mono and binucleate), irrespective of the animal age. This shows, therefore, the exclusive effect of asymmetry (right side). At the time of writing there is still no conclusive explanation for some SCG quantitative changes exclusively assigned to asymmetry (right side) and those assigned to the interaction between asymmetry (right side) and senescence in pacas. We therefore suggest that forthcoming studies should focus on the functional consequences of SCG structural asymmetry during post-natal development. Another interesting investigation would be to examine the interaction between ganglia and their innervation targets using anterograde and retrograde neurotracers. Would differences in the size of target organs explain ganglia structural asymmetry?
Post-natal development comprises both maturation (from newborn to adult) and ageing (from adult to senility) and, during this phase, several adaptive mechanisms occur in sympathetic ganglia, albeit they are not fully understood. Therefore, the present study aimed at detecting whether post-natal development would exert any effect on the size and number of a guinea pig's superior cervical ganglion (SCG) neurons. Twenty right SCGs from male subjects were used at four ages, i.e. newborn (7 days), young (30 days), adult (7 months) and old animals (50 months). Using design-based stereological methods the volume of ganglion and the total number of mononucleate and binucleate neurons were estimated. Furthermore, the mean perikaryal volume of mononucleate and binucleate neurons was estimated using the vertical nucleator. The main findings of this study were a combination of post-natal-dependent increases and decreases in some variables: (i) 27% increase in ganglion volume, (ii) 24% and 43% decreases in the total number of mono and binucleate neurons, respectively, and (iii) 27.5% and 40% decreases in the mean perikaryal volume of mono and binucleate neurons, respectively. Despite the fall in neuron numbers found here, post-natal development is not only associated with neuron loss, but also embraces other structural adaptive mechanisms, which are discussed in this paper.
In this study the main question investigated was the number and size of both binucleate and mononucleate superior cervical ganglion (SCG) neurons and, whether post-natal development would affect these parameters. Twenty left SCGs from 20 male pacas were used. Four different ages were investigated, that is newborn (4 days), young (45 days), adult (2 years), and aged animals (7 years). By using design-based stereological methods, that is the Cavalieri principle and a physical disector combined with serial sectioning, the total volume of ganglion and total number of mononucleate and binucleate neurons were estimated. Furthermore, the mean perikaryal (somal) volume of mononucleate and binucleate neurons was estimated using the vertical nucleator. The main findings of this study were a 154% increase in the SCG volume, a 95% increase in the total number of mononucleate SCG neurons and a 50% increase in the total volume of SCG neurons. In conclusion, apart from neuron number, different adaptive mechanisms may coexist in the autonomic nervous system to guarantee a functional homeostasis during ageing, which is not always associated with neuron losses. Anat Rec, 292:966-975, 2009. V V C 2009 Wiley-Liss, Inc.
The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number. We have applied design-based stereological tools at the light-microscopic level to assess the volumetric composition of ganglia and to estimate the numbers and sizes of neurons in SCGs from rats, capybaras and horses. Using transmission electron microscopy, we have obtained design-based estimates of the surface coverage of dendrites by postsynaptic apposition zones and model-based estimates of the numbers and sizes of synaptophysin-labelled axo-dendritic synaptic disks. Linear regression analysis of log-transformed data has been undertaken in order to establish the nature of the relationships between numbers and SCG volume (V(scg)). For SCGs (five per species), the allometric relationship for neuron number (N) is N=35,067xV (scg) (0.781) and that for synapses is N=20,095,000xV (scg) (1.328) , the former being a good predictor and the latter a poor predictor of synapse number. Our findings thus reveal the nature of SCG growth in terms of its main ingredients (neurons, neuropil, blood vessels) and show that larger mammals have SCG neurons exhibiting more complex arborizations and greater numbers of axo-dendritic synapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.