Tillandsia usneoides is an aerial epiphytic bromeli-ad that absorbs water and nutrients directly from the atmosphere by scales covering its surface. We expanded the use of this species as a broader biomonitor based on chemical and structural markers to detect changes in air quality. The usefulness of such comprehensive approach was tested during the construction and opening of a highway (SP-21) in São Paulo State, Brazil. The biomonitoring study was performed from 2009 to 2012, thus comprising the period during construction and after the highway inauguration. Metal accumulation and structural alterations were assessed, in addition to microscopy analyses to understand the metal chelation in plant tissues and to assess the causes of alterations in the number and shape of scale cells. Altogether, our analyses support the use of this species as a wide biomonitor of air quality in urbanized areas. This article was originally intended as an invited contribution to the special issue Biomonitoring of atmospheric pollution: possibilities and future challenges but was inadvertently published prematurely in
Tillandsia usneoides is an aerial epiphytic bromeliad that absorbs water and nutrients directly from the atmosphere by scales covering its surface. We expanded the use of this species as a broader biomonitor based on chemical and structural markers to detect changes in air quality. The usefulness of such comprehensive approach was tested during the construction and opening of a highway (SP-21) in São Paulo State, Brazil. The biomonitoring study was performed from 2009 to 2012, thus comprising the period during construction and after the highway inauguration. Metal accumulation and structural alterations were assessed, in addition to microscopy analyses to understand the metal chelation in plant tissues and to assess the causes of alterations in the number and shape of scale cells. Altogether, our analyses support the use of this species as a wide biomonitor of air quality in urbanized areas.This article was originally intended as an invited contribution to the special issue Biomonitoring of atmospheric pollution: possibilities and future challenges but was inadvertently published prematurely in
Lianas have stems with a very specialized anatomical architecture, with attributes that allows efficient conductivity and flexibility. Among the suite of features, collectively named "lianescent vascular syndrome", we can quote the presence of cambial variants (which are unusual patterns of secondary growth), vessel dimorphism (presence of wide and narrow vessel co-occurring, sometimes associated), fewer fibres or thin-walled fibres, tall and large rays, and abundant parenchyma (occasionally non-lignified, both on axial and radial axis) when compared with related self-supporting species. Most of lianas in Bignoniaceae are comprised in the tribe Bignonieae, a large and morphologically diverse neotropical clade, possessing the cambial variant "furrowed xylem" as synapomorphy. The stem anatomy of Bignonieae lianas is well known, but data about root anatomy are scarce. It is known that cambial variants occur in roots of some Bignonieae, but there is no information about other features of the secondary structure. Thus, the aim of this study is to elucidate some questions, dividing the analysis in two parts. In the first chapter, we intent to verify the presence of cambial variants in roots and stems, and possible attributes related to vascular lianescent syndrome in roots. In the second chapter we analyze the anatomical settings of secondary xylem in roots and stems, in order to verify possible differences between them. The key results obtained are here synthetized: (i) roots have cambial variants similar to stems, but the phloem wedges form interspersed and in same number as the protoxylem poles; (ii) in Amphilophium the included phloem wedges, a characteristic of the genus, are also included in secondary phloem, besides the xylem; (iii) presence of vascular neoformations in Amphilophium, formed by cells in nonconducting portion of the phloem, increasing the conductive area; (iv) presence of vessel dimorphism and tall and large rays, plus cambial variant, characteristic of vascular lianescent syndrome in the roots of the analyzed species, similar to stems; (v) the qualitative features of the xylem are similar between roots and stems, as are statistically similar the quantitative features. We believe that more studies are necessary in the genetic and hormonal field, aiming to understand why the lianescent syndrome occurs in organs subjected to different growth conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.