The regional occupancy and local abundance of species are thought to be strongly correlated to their body size, niche breadth and niche position. The strength of the relationships among these variables can also differ between different organismal groups. Here, we analyzed data on stream diatoms and insects from a high-latitude drainage basin to investigate these relationships. To generate measures of niche position and niche breadth for each species, we used sets of local environmental and catchment variables separately, applying the outlying mean index analysis. Beta regression and negative binomial generalized linear models were run to predict regional occupancy and mean local abundance, respectively. We found a positive occupancy-abundance relationship in both diatoms and insects, and that niche-based variables were the main predictors of variation in regional occupancy and local abundance. This finding was mainly due to local environmental niche position, whereas the effects of niche breadth on regional occupancy and local abundance were less important. We also found a relationship between body size and local abundance or regional occupancy of diatoms. Our results thus add to current macroecological research by emphasizing the strong importance of niche position rather than niche breadth and body size for regional occupancy and local abundance in rarely studied organisms (e.g., diatoms and insects) and ecosystems (i.e., wilderness streams).
Aim: Understanding variation in biodiversity typically requires consideration of factors operating at different spatial scales. Recently, ecologists and biogeographers have recognized the need of analysing ecological communities in the light of multiple facets including not only species-level information but also functional and phylogenetic approaches to improve our understanding of the relative contribution of processes shaping biodiversity. Here, our aim was to disentangle the relative importance of environmental variables measured at multiple levels (i.e., local, catchment, climate, and spatial variables) influencing variation in macroinvertebrate beta diversity facets (i.e., species, traits, and phylogeny) and their components (i.e., replacement and abundance difference) in boreal streams. Taxon: Aquatic macroinvertebrates Location: Western FinlandMethods: A total of 105 streams were sampled in western Finland, encompassing a geographical extent over 500 km. We analysed variation in the different beta diversity facets and components using distance-based redundancy analysis and associated variation partitioning procedures. We modelled spatial structures using distance-based Moran eigenvector maps. Results:We found that the relative influence of explanatory variables on each diversity facet and component revealed relatively similar patterns. Our main finding was that local environmental and spatial variables generally contributed most to the total explained variability in all facets and components of beta diversity, whereas catchment and climate variables explained less variation in the beta diversity facets at the spatial scale considered in this study.Main conclusions: Different facets of beta diversity were mainly influenced by local environmental variables and spatial structuring, likely acting through deterministic and stochastic pathways respectively. Identifying the ecological variables and mechanisms that drive variation in beta diversity may be used to guide the conservation and restoration efforts for biodiversity under global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.