Amidines with a trichloromethyl group exhibit the properties of inotropic agents, which are used as scaffolds in synthesizing aza-heterocycles and ligands for complex formation. Functionalized amidines show anticancer, and antidiabetic activity, and are antihypertensive and antiparasitic agents. The synthesis of new functional derivatives of such amidines is definitely an urgent task. The introduction of an alkenyl substituent and several nucleophilic centers in the amidine creates prerequisites for electrophilic cyclization. This work aims to study the reactions of N-allyl-N-methyl-N'-(trimethylsilyl)-2,2,2-trichloroethanimidamide with tellurium halides. The starting N-allyl-N-methyl-N'-(trimethylsilyl)-2,2,2-trichloroethanimidamide was synthesized from N-allyl-N-methyl-2,2,2-trichloroethanimidamide by the action of trimethylsilyl chloride in the presence of triethylamine base. The reaction of N-allyl-N-methyl-N'-(trimethylsilyl)-2,2,2-trichloroethanimidamide with tellurium dioxide in hydrohalic acid was carried out while cooling to 0°C. Elemental analysis confirms that the electrophilic reagent is in its acidic form in the complex. The 1H NMR spectra of the obtained complexes indicate the absence of EVC - the spin pattern of the proton signals of the allylic substituent, characteristic of the starting compounds, is preserved, but the signals are shifted by 0.3–0.6 ppm. The absence of proton signals of the trimethyl salt substituent indicates the removal of imide protection under these conditions. The presence of a broadened singlet in a weak field indicates the presence of acidic protons. Apparently, protonation does not take place on the alkenyl multiple bonds, but, presumably, on the imide nitrogen atom. Based on elemental analysis, the composition of the formed complex was determined: N-allyl-N-methyl-2,2,2-trichloroethanimidamidine: hexahalogenotelluric acid as 1:0.5, which contains 4 or 3 water molecules. So the interaction of N-allyl-N-methyl-N'-(trimethylsilyl)-2,2,2-trichloroethanimidamide with tellurium tetrahalides in a strongly acidic environment, tellurium- or proton-induced cyclization does not occur, but hexahalogenotellurate N-allyl-N-methyl-2,2,2-trichloroethaneimidamidinium regardless of the polarity of the solvent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.