Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm(-1), assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method.
Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host.
Patients with sickle cell anemia (Hb SS) or sickle cell trait (Hb AS) may present several types of renal dysfunction; however, comparison of the prevalence of these abnormalities between these two groups and correlation with the duration of disease in a large number of patients have not been thoroughly investigated. In a cross-sectional study using immunoenzymometric assays to measure tubular proteinuria, microalbuminuria, measurement of creatinine clearance, urinary osmolality and analysis of urine sediment, we evaluated glomerular and tubular renal function in 106 adults and children with Hb SS (N = 66) or Hb AS (N = 40) with no renal failure (glomerular filtration rate (GFR) >85 ml/min). The percentage of individuals with microalbuminuria was higher among Hb SS than among Hb AS patients (30 vs 8%, P<0.0001). The prevalence of microhematuria was similar in both groups (26 vs 30%, respectively). Increased urinary levels of retinol-binding protein or ß 2 -microglobulin were detected in only 3 Hb SS and 2 Hb AS patients. Urinary osmolality was reduced in patients with Hb SS or with Hb AS; however, it was particularly evident in Hb SS patients older than 15 years (median = 393 mOsm/kg, range = 366-469) compared with Hb AS patients (median = 541 mOsm/kg, range = 406-722). Thus, in addition to the frequently reported early reduction of urinary osmolality and increased GFR, nondysmorphic hematuria was found in 26 and 30% of patients with Hb SS or Hb AS, respectively. Microalbuminuria is an important marker of glomerular injury in patients with Hb SS and may also be demonstrated in some Hb AS individuals. Significant proximal tubular dysfunction is not a common feature in Hb SS and Hb AS population at this stage of the disease (i.e., GFR >85 ml/min).
In this work, FT-Raman spectroscopy was explored as a fast and reliable screening method for the assessment of milk powder quality and the identification of samples adulterated with whey (1-40% w/w). Raman measurements can easily differentiate milk powders without the need of sample preparation, whereas the traditional methods of quality control, including high-performance liquid chromatography, are laborious and slow. The FT-Raman spectra of whole, low-fat, and skimmed milk powder samples were obtained and distinguished from commercial milk powder samples. In addition, the exploratory analysis employing data from Raman spectroscopy and principal component analysis (PCA)allowed the separation of milk powder samples according to type,identifying differences between samples in the same group. Multivariate analysis was also developed to classify the adulterated milk powder samples using PCA and partial least squares discriminate analysis (PLS-DA). The resulting PLS-DA model correctly classified 100% of the adulterated samples. These results clearly demonstrate the utility of FT-Raman spectroscopy combined with chemometrics as a rapid method for screening milk powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.