Viruses are ubiquitous organisms, but their role in the ecosystem and their prevalence are still poorly understood. Mimiviruses are extremely complex and large DNA viruses. Although metagenomic studies have suggested that members of the family Mimiviridae are abundant in oceans, there is a lack of information about the association of mimiviruses with marine organisms. In this work, we demonstrate by molecular and virological methods that oysters are excellent sources for mimiviruses isolation. Our data not only provide new information about the biology of these viruses but also raise questions regarding the role of oyster consumption as a putative source of mimivirus infection in humans.
Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR) and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%–99% similar, whereas Kroon virus had a low similarity (90%–91%) with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment.
Animal and human wastewater can potentially contaminate water sources and the treatment of drinking water may not effectively remove all contaminants, especially viruses. The purpose of the present study was to evaluate the viral contamination of water used for human and animal consumption in the city of Concórdia, located in southern Brazil. Porcine circovirus type 2 (PCV2), porcine adenovirus (PAdV), human adenovirus (HAdV) and human norovirus (NoV) were searched for using quantitative polymerase chain reaction (qPCR). HAdV-positive samples were tested for viral infectivity by plaque assay. The qPCR results showed that PAdV, PCV2 and HAdV genetic material were present in all sampling sites. NoV was absent in all samples. The presence of genetic material from PAdV and PCV2 was detected in 30% and 45% of the 36 analyzed samples, respectively, with an average of 10 2 gc mL -1 for PAdV and 10 4 gc mL -1 for PCV2. HAdV was present in 100% of the samples, with an average of 10 4 gc mL -1. However, in plaque assay, only 36% of the samples were positive. As viable particles of HAdV were found in drinking water, these results confirm that swine manure and human sewage impact surface water and groundwater, endangering water quality and indicating a potential risk to public health.
We provide a global overview of the intestinal bacteriome of Litopenaeus vannamei in two rearing systems and after an oral challenge by the White spot syndrome virus (WSSV). By using a high-throughput 16S rRNA gene sequencing technology, we identified and compared the composition and abundance of bacterial communities from the midgut of shrimp reared in the super-intensive biofloc technology (BFT) and clear seawater system (CWS). The predominant bacterial group belonged to the phylum Proteobacteria, followed by the phyla Bacteroidetes, Actinobacteria, and Firmicutes. Within Proteobacteria, the family Vibrionaceae, which includes opportunistic shrimp pathogens, was more abundant in CWS than in BFT-reared shrimp. Whereas the families Rhodobacteraceae and Enterobacteriaceae accounted for almost 20% of the bacterial communities of shrimp cultured in BFT, they corresponded to less than 3% in CWS-reared animals. Interestingly, the WSSV challenge dramatically changed the bacterial communities in terms of composition and abundance in comparison to its related unchallenged group. Proteobacteria remained the dominant phylum. Vibrionaceae was the most affected in BFT-reared shrimp (from 11.35 to 20.80%). By contrast, in CWS-reared animals the abundance of this family decreased from 68.23 to 23.38%. Our results provide new evidence on the influence of both abiotic and biotic factors on the gut bacteriome of aquatic species of commercial interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.