An urban wastewater treatment system was developed in Portugal for posterior in situ feasibility testing at the Bulgarian Antarctic Base, using its domestic wastewater. The aim of this system was to develop a low cost, integrated approach for wastewater treatment and production of nutrient solutions (NS) for hydroponic cultivation of lettuce (Lactuca sativa var. crispa) in Antarctic stations, or any other place where the lack of resources and logistical hardships make the wastewater treatment and reuse impractical. The wastewater treatment system consisted in manual agitation lime chemical precipitation (LCPm) and effluent natural neutralization (NN) by atmospheric CO 2 carbonation reactions (with and without air injection). The resulting effluent/NS had macronutrient values (nitrogen and phosphorous) for the hydroponic cultivation of lettuce below the values of commercial NS and a high pH (pH ≈ 8).The treatment achieved a total coliform removal rate of 100%. Before the LCPm treatment system development, several lime-based reagents were tested under different reaction pH and using mechanical agitation, to access their organic matter removal efficiency, as chemical oxygen demand (COD). The best COD removal results obtained were: commercial Ca(OH) 2 (pH 11.5 -89%), reagent grade Ca(OH) 2 (pH 11.5 -79%) and CaO (pH 12.0 -64%).
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
The utilization of agro-industrial wastewaters (AIWWs), pretreated by immediate one-step lime precipitation + natural carbonation, as a nutritive solution for the hydroponic production of lettuce was evaluated. The AIWWs studied were olive mill wastewater (OMW), winery wastewater (WW), and cheese whey wastewater (CWW). Lettuces (Lactuca sativa L. var. crispa) were grown in a closed nutrient film technique hydroponic system, using the pretreated AIWWs (OMW-T, WW-T, and CWW-T) and a control nutrient solution (CNS). The growth and sensory analysis of lettuces and the environmental parameters of effluents after hydroponics were evaluated. The average number of lettuce leaves obtained with nutrient solutions prepared with AIWW-T was lower than that from CNS, but the highest lettuce chlorophyll content was attained with CWW-T, which also presented the best grow results. In general, sensory analysis did not show significant differences from the lettuces grown in the different pretreated AIWWs and CNS. As for the environmental parameters of the effluents from hydroponics, according to the Portuguese legislation, only the chemical oxygen demand of the OMW-T and WW-T presented slightly higher values than that of the environmental limit values for discharge in surface waters, showing the feasibility of using pretreated agro-industrial effluents in hydroponic lettuce cultivation, while obtaining a treated effluent, in a circular economy perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.