BackgroundAlthough males contribute half of the embryo’s genome, only recently has interest begun to be directed toward the potential impact of paternal experiences on the health of offspring. While there is evidence that paternal malnutrition may increase offspring susceptibility to metabolic diseases, the influence of paternal factors on a daughter’s breast cancer risk has been examined in few studies.MethodsMale Sprague-Dawley rats were fed, before and during puberty, either a lard-based (high in saturated fats) or a corn oil-based (high in n-6 polyunsaturated fats) high-fat diet (60 % of fat-derived energy). Control animals were fed an AIN-93G control diet (16 % of fat-derived energy). Their 50-day-old female offspring fed only a commercial diet were subjected to the classical model of mammary carcinogenesis based on 7,12-dimethylbenz[a]anthracene initiation, and mammary tumor development was evaluated. Sperm cells and mammary gland tissue were subjected to cellular and molecular analysis.ResultsCompared with female offspring of control diet-fed male rats, offspring of lard-fed male rats did not differ in tumor latency, growth, or multiplicity. However, female offspring of lard-fed male rats had increased elongation of the mammary epithelial tree, number of terminal end buds, and tumor incidence compared with both female offspring of control diet-fed and corn oil-fed male rats. Compared with female offspring of control diet-fed male rats, female offspring of corn oil-fed male rats showed decreased tumor growth but no difference regarding tumor incidence, latency, or multiplicity. Additionally, female offspring of corn oil-fed male rats had longer tumor latency as well as decreased tumor growth and multiplicity compared with female offspring of lard-fed male rats. Paternal consumption of animal- or plant-based high-fat diets elicited opposing effects, with lard rich in saturated fatty acids increasing breast cancer risk in offspring and corn oil rich in n-6 polyunsaturated fatty acids decreasing it. These effects could be linked to alterations in microRNA expression in fathers’ sperm and their daughters’ mammary glands, and to modifications in breast cancer-related protein expression in this tissue.ConclusionsOur findings highlight the importance of paternal nutrition in affecting future generations’ risk of developing breast cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-016-0729-x) contains supplementary material, which is available to authorized users.
Purpose Whether it is safe for estrogen receptor positive (ER+) breast cancer patients to consume soy isoflavone genistein (GEN) remains controversial. We compared the effects of GEN intake mimicking either Asian (lifetime) or Caucasian (adulthood) intake patterns to that of starting its intake during tamoxifen (TAM) therapy using a preclinical model. Experimental Design Female Sprague-Dawley rats were fed an AIN93G diet supplemented with 0 (control diet) or 500 ppm GEN from postnatal day 15 onwards (lifetime GEN). Mammary tumors were induced with 7,12-dimethylbenz(a)anthracene (DMBA), after which a group of control diet fed rats were switched to GEN diet (adult GEN). When the first tumor in a rat reached 1.4 cm in diameter, TAM was added to the diet, and a subset of previously only control diet fed rats also started GEN intake (post-diagnosis GEN). Results Lifetime GEN intake reduced de novo resistance to TAM, compared with post-diagnosis GEN groups. Risk of recurrence was lower both in the lifetime and adult GEN groups than in the post-diagnosis GEN group. We observed downregulation of unfolded protein response (UPR) and autophagy related genes (GRP78, IRE1α, ATF4 and Beclin-1), and genes linked to immunosuppression (TGFβ and Foxp3), and upregulation of cytotoxic T cell marker CD8a in the tumors of the lifetime GEN group, compared with controls, post-diagnosis, and/or adult GEN groups. Conclusions GEN intake mimicking Asian consumption patterns improved response of mammary tumors to TAM therapy, and this effect was linked to reduced activity of UPR and pro-survival autophagy signaling, and increased anti-tumor immunity.
The present study investigated whether early life exposure to high levels of animal fat increases breast cancer risk in adulthood in rats. Dams consumed a lard-based high-fat (HF) diet (60% fat-derived energy) or an AIN93G control diet (16% fat-derived energy) during gestation or gestation and lactation. Their 7-week-old female offspring were exposed to 7,12-dimethyl-benzo[a]anthracene to induce mammary tumors. Pregnant dams consuming an HF diet had higher circulating leptin levels than pregnant control dams. However, compared to the control offspring, significantly lower susceptibility to mammary cancer development was observed in the offspring of dams fed an HF diet during pregnancy (lower tumor incidence, multiplicity and weight), or pregnancy and lactation (lower tumor multiplicity only). Mammary epithelial elongation, cell proliferation (Ki67) and expression of NFκB p65 were significantly lower and p21 expression and global H3K9me3 levels were higher in the mammary glands of rats exposed to an HF lard diet in utero. They also tended to have lower Rank/Rankl ratios (P=.09) and serum progesterone levels (P=.07) than control offspring. In the mammary glands of offspring of dams consuming an HF diet during both pregnancy and lactation, the number of terminal end buds, epithelial elongation and the BCL-2/BAX ratio were significantly lower and serum leptin levels were higher than in the controls. Our data confirm that the breast cancer risk of offspring can be programmed by maternal dietary intake. However, contrary to our expectation, exposure to high levels of lard during early life decreased later susceptibility to breast cancer.
Progesterone has been associated with the development of gestational diabetes (GD) due to the enhancement of insulin resistance. As b-cell apoptosis participates in type 1 and type 2 diabetes pathophysiology, we proposed the hypothesis that progesterone might contribute to the development of GD through a mechanism that also involves b-cell death. To address this question, RINm5F insulin-producing cells were incubated with progesterone (25-100 mM), in the presence or absence of a-tocopherol (40 mM). After 24 or 48 h, membrane integrity and DNA fragmentation were analyzed by flow cytometry. Caspase activity was used to identify the mode of cell death. The involvement of endoplasmic reticulum stress in the action of progesterone was investigated by western blotting. Oxidative stress was measured by 2',7'-dichlorofluorescein diacetate (DCFDA) oxidation. Isolated rat islets were used in similar experiments in order to confirm the effect of progesterone in primary b-cells. Incubation of RINm5F cells with progesterone increased the number of cells with loss of membrane integrity and DNA fragmentation. Progesterone induced generation of reactive species. Pre-incubation with a-tocopherol attenuated progesterone-induced apoptosis. Western blot analyses revealed increased expression of CREB2 and CHOP in progesteronetreated cells. Progesterone caused apoptotic death of rat islet cells and enhanced generation of reactive species. Our results show that progesterone can be toxic to pancreatic b-cells through an oxidative-stress-dependent mechanism that induces apoptosis. This effect may contribute to the development of GD during pregnancy, particularly under conditions that require administration of pharmacological doses of this hormone.
Breast cancer is a global public health problem and accumulating evidence indicates early-life exposures as relevant factors in the disease risk determination. Recent studies have shown that paternal nutrition can influence offspring health including breast cancer risk. Selenium is a micronutrient with essential role in central aspects of embryogenesis, male fertility and cancer and that has been extensively studied as a chemopreventive agent in several breast cancer experimental models. Thus, we designed an animal study to evaluate whether paternal selenium deficiency or supplementation during preconception could affect the female offspring mammary gland development and breast cancer susceptibility. Male Sprague-Dawley rats were fed AIN93-G diet containing 0.15 ppm (control diet), 0.05 ppm (deficient diet) or 1 ppm (supplemented diet) of selenium for 9 weeks and mated with control female rats. Mammary carcinogenesis was induced with 7,12-dimethylbenz[a]anthracene (DMBA) in their female offspring. Paternal selenium deficiency increased the number of terminal end buds, epithelial elongation and cell proliferation in the mammary gland of the female rat offspring and these effects were associated with higher susceptibility to DMBA-induced mammary tumors (increased incidence and higher grade tumors). On the other hand, paternal selenium supplementation did not influence any of these parameters. These results highlight the importance of father's nutrition including selenium status as a relevant factor affecting daughter's breast cancer risk and paternal preconception as a potential developmental stage to start disease preventive strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.