After two decades of clinical trials, gene therapy demonstrated effectiveness in the treatment of a series of diseases. Currently, several gene therapy products are approved and used in the clinic. Lentiviral vectors (LVs) are one of the most used transfer vehicles to deliver genetic material and the vector of choice to modify hematopoietic cells to correct primary immunodeficiencies, hemoglobinopathies, and leukodystrophies. LVs are also widely used to modify T cells to treat cancers in immunotherapies (e.g., chimeric antigen receptors T cell therapies, CAR-T). In genome editing, LVs are used to deliver sequence-specific designer nucleases and DNA templates. The approval LV gene therapy products (e.g., Kymriah, for B-cell Acute lymphoblastic leukemia treatment; LentiGlobin, for 𝜷-thalassemia treatment) reinforced the need to improve their bioprocess manufacturing. The production has been mostly dependent on transient transfection. Production from stable cell lines facilitate GMP compliant processes, providing an easier scale-up, reproducibility and cost-effectiveness. The establishment of stable LV producer cell lines presents, however, several difficulties, with the cytotoxicity of some of the vector proteins being a major challenge. Genome editing technologies pose additional challenges to LV producer cells. Herein the major bottlenecks, recent achievements, and perspectives in the development of LV stable cell lines are revised.
Stable cell lines provide scalable and high yielding production systems enabling the development of efficient manufacturing bioprocesses, essential for the supply of viral vectors for gene and cell therapies. The establishment of lentiviral vector producer cell lines is however very challenging. In this review, the major bottlenecks and achievements in the development of lentiviral vector stable cell lines are discussed. This is reported by Mariana V. Ferreira, Elisa T. Cabral, Ana Sofia Coroadinha in the article 2000017.
Adeno-associated viral (AAV) vectors represent one of the leading platforms for gene delivery. Nevertheless, their small packaging capacity restricts their use for diseases requiring large-gene delivery. To overcome this, dual-AAV vector systems that rely on protein trans-splicing were developed, with the split-intein Npu DnaE among the most-used. However, the reconstitution efficiency of Npu DnaE is still insufficient, requiring higher vector doses. In this work, two split-inteins, Cfa and Gp41-1, with reportedly superior trans-splicing were evaluated in comparison with Npu DnaE by transient transfections and dual-AAV in vitro co-transductions. Both Cfa and Gp41-1 split-inteins enabled reconstitution rates that were over two-fold higher than Npu DnaE and 100% of protein reconstitution. The impact of different vector preparation qualities in split-intein performances was also evaluated in co-transduction assays. Higher-quality preparations increased split-inteins’ performances by three-fold when compared to low-quality preparations (60–75% vs. 20–30% full particles, respectively). Low-quality vector preparations were observed to limit split-gene reconstitutions by inhibiting co-transduction. We show that combining superior split-inteins with higher-quality vector preparations allowed vector doses to be decreased while maintaining high trans-splicing rates. These results show the potential of more-efficient protein-trans-splicing strategies in dual-AAV vector co-transduction, allowing the extension of its use to the delivery of larger therapeutic genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.