Despite the AISI 304 stainless steel has high corrosion/oxidation resistance, its tribological properties are poor, being one of the barriers for use in severe wear applications. Thus, there is a wide field for studying technologies that aim to increase the surface hardness and wear resistance of this material. In this work, hardness and wear resistance for AISI 304 stainless steel submitted to the thermochemical treatment by low temperature plasma carburizing (LTPC) in a fixed gas mixture composition of 93% H 2 and 7% CH 4 are presented. Through the evaluation of the carburizing layers, it was possible to observe a substantial improvement in tribological properties after all temperature and time of treatment. This improvement is directly related to the increase of the process variables; among them temperature has a stronger influence on the wear resistance obtained using LTPC process.
Studies regarding biodegradable nanocomposites to be used as orthopedics devices have been intensified. This work aims to investigate the influence of ND dispersion on thermal and mechanical properties of a biocomposite of poly(3-hydroxybutyrate) (P(3HB)) reinforced with nanodiamonds (ND) intended to be used as orthopedics devices, with advantages as biodegradability. In order to improve its dispersion, P(3HB) has encapsulated ND in three different mass ratios: P(3HB):ND(16:1), (12:1) and (8:1). However, for all formulations, NDs are presented as agglomerates, in different intensities. In order to relate the distribution of ND within the polymer matrix and biocomposite properties, TGA, DSC, and DMA analysis were done. The formulation with higher content of ND, P(3HB):ND(8:1), presents larger aggregates; thus, decreasing its properties. With smaller and more distributed agglomerates, the 12:1 ratio composite displayed superior storage modulus and glass transition temperature, probably due to better polymer chain restriction.
Several studies of biodegradable polymers and copolymers have been carried for different applications in the biomedical area. This current study aims to develop a biocomposite to be used as an orthopedic device, using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(HB-HV), a biodegradable copolymer, with 94%HB and 6%HV, as matrix; and nanodiamonds (ND) with primary grains of 4-6nm, as reinforcement. The nanodiamonds were previously encapsulated by P(HB-HV) and specimens were prepared using a hydraulic press and injection molding machine, in order to evaluate which method presents a better performance. Thermal and mechanical analyses were done to compare their behavior. The biocomposite and pure P(HB-HV) samples were analyzed by flexural testing, nanoidentation, DMA, XRD, TGA. The distribution of nanodiamonds on the specimen fracture surface were investigated by SEM. The SEM micrographs allowed us to concluded that the encapsulation of nanodiamonds by P(HB-HV) was successfully performed, promoting a better interface and distribution in the polymeric matrix. The presence of ND in the polymeric matrix decreased the P(HB-HV) crystallinity, inhibiting the crystallite growth. The mechanical properties obtained from flexural test, nanoidentation and DMA of the injection-molded specimens were superior to compression-molded, due to its homogeneous and continuous structure. In vitro analysis was performed to evaluate the samples cytoxicity.
ResumoO uso de tratamentos termoquímicos assistidos por plasma tem apresentado grande crescimento nos últimos anos em consequência dos excelentes resultados obtidos na modificação de superfícies em materiais de engenharia. Neste estudo será utilizado o aço inoxidável AISI 304 que apresenta boas características de resistência à corrosão, tendo vasto campo de aplicação nas indústrias têxteis e químicas. Será realizado tratamento termoquímico de cementação a plasma com temperatura fixa, variação de tempo e mistura gasosa (CH4). Palavras-chave: Cementação a plasma; Aço inoxidável AISI 304; Desgaste microabrasivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.