The aim of this study was to evaluate a wide panel of antigens of Mycobacterium avium subsp. paratuberculosis (MAP) to select candidates for the diagnosis of paratuberculosis (PTB). A total of 54 recombinant proteins were spotted onto nitrocellulose membranes and exposed to sera from animals with PTB (n = 25), healthy animals (n = 10), and animals experimentally infected with M. bovis (n = 8). This initial screening allowed us to select seven antigens: MAP 2513, MAP 1693, MAP 2020, MAP 0038, MAP 1272, MAP 0209c, and MAP 0210c, which reacted with sera from animals with PTB and showed little cross-reactivity with sera from healthy animals and animals experimentally infected with M. bovis. The second step was to evaluate the antigen cocktail of these seven antigens by ELISA. For this evaluation, we used sera from animals with PTB (n = 25), healthy animals (n = 26), and animals experimentally infected with M. bovis (n = 17). Using ELISA, the cocktail of the seven selected MAP antigens reacted with sera from 18 of the 25 animals with PTB and did not exhibit cross-reactivity with healthy animals and only low reactivity with animals with bovine tuberculosis. The combined application of these antigens could form part of a test which may help in the diagnosis of PTB.
The binding and ingestion of Mycobacterium avium subsp. paratuberculosis (MAP) by host cells are fibronectin (FN) dependent. In several species of mycobacteria, a specific family of proteins allows the attachment and internalization of these bacteria by epithelial cells through interaction with FN. Thus, the identification of adhesion molecules is essential to understand the pathogenesis of MAP. The aim of this study was to identify and characterize FN binding cell wall proteins of MAP. We searched for conserved adhesins within a large panel of surface immunogenic proteins of MAP and investigated a possible interaction with FN. For this purpose, a cell wall protein fraction was obtained and resolved by 2D electrophoresis. The immunoreactive spots were identified by MALDI-TOF MS and a homology search was performed. We selected elongation factor Tu (EF-Tu) as candidate for further studies. We demonstrated the FN-binding capability of EF-Tu using a ligand blot assay and also confirmed the interaction with FN in a dose-dependent manner by ELISA. The dissociation constant of EF-Tu was determined by surface plasmon resonance and displayed values within the μM range. These data support the hypothesis that this protein could be involved in the interaction of MAP with epithelial cells through FN binding.
The lprG-p55 operon of Mycobacterium tuberculosis and Mycobacterium bovis is involved in the transport of toxic compounds. P55 is an efflux pump that provides resistance to several drugs, while LprG is a lipoprotein that modulates the host's immune response against mycobacteria. The knockout mutation of this operon severely reduces the replication of both mycobacterial species during infection in mice and increases susceptibility to toxic compounds. In order to gain insight into the function of LprG in the Mycobacterium avium complex, in this study, we assayed the effect of the deletion of lprG gene in the D4ER strain of Mycobacterium avium subsp. avium. The replacement of lprG gene with a hygromycin cassette caused a polar effect on the expression of p55. Also, a twofold decrease in ethidium bromide susceptibility was observed and the resistance to the antibiotics rifampicin, amikacin, linezolid, and rifabutin was impaired in the mutant strain. In addition, the mutation decreased the virulence of the bacteria in macrophages in vitro and in a mice model in vivo. These findings clearly indicate that functional LprG and P55 are necessary for the correct transport of toxic compounds and for the survival of MAA in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.