Background Water is one of the main limiting factors for plant growth and crop productivity. Plants constantly monitor water availability and can rapidly adjust their metabolism by altering gene expression. This leads to phenotypic plasticity, which aids rapid adaptation to climate changes. Here, we address phenotypic plasticity under drought stress by analyzing differentially expressed genes (DEG) in four phylogenetically related neotropical Bignoniaceae tree species: two from savanna, Handroanthus ochraceus and Tabebuia aurea, and two from seasonally dry tropical forests (SDTF), Handroanthus impetiginosus and Handroanthus serratifolius. To the best of our knowledge, this is the first report of an RNA-Seq study comparing tree species from seasonally dry tropical forest and savanna ecosystems. Results Using a completely randomized block design with 4 species × 2 treatments (drought and wet) × 3 blocks (24 plants) and an RNA-seq approach, we detected a higher number of DEGs between treatments for the SDTF species H. serratifolius (3153 up-regulated and 2821 down-regulated under drought) and H. impetiginosus (332 and 207), than for the savanna species. H. ochraceus showed the lowest number of DEGs, with only five up and nine down-regulated genes, while T. aurea exhibited 242 up- and 96 down-regulated genes. The number of shared DEGs among species was not related to habitat of origin or phylogenetic relationship, since both T. aurea and H impetiginosus shared a similar number of DEGs with H. serratifolius. All four species shared a low number of enriched gene ontology (GO) terms and, in general, exhibited different mechanisms of response to water deficit. We also found 175 down-regulated and 255 up-regulated transcription factors from several families, indicating the importance of these master regulators in drought response. Conclusion Our findings show that phylogenetically related species may respond differently at gene expression level to drought stress. Savanna species seem to be less responsive to drought at the transcriptional level, likely due to morphological and anatomical adaptations to seasonal drought. The species with the largest geographic range and widest edaphic-climatic niche, H. serratifolius, was the most responsive, exhibiting the highest number of DEG and up- and down-regulated transcription factors (TF).
Male researchers dominate scientific production in science, technology, engineering, and mathematics (STEM). However, potential mechanisms to avoid this gender imbalance remain poorly explored in STEM, including ecology and evolution areas. In the last decades, changes in the peer-review process towards double-anonymized (DA) have increased among ecology and evolution (EcoEvo) journals. Using comprehensive data on articles from 18 selected EcoEvo journals with an impact factor >1, we tested the effect of the DA peer-review process in female-leading (i.e., first and senior authors) articles. We tested whether the representation of female-leading authors differs between double and single-anonymized (SA) peer-reviewed journals. Also, we tested if the adoption of the DA by previous SA journals has increased the representativeness of female-leading authors over time. We found that publications led by female authors did not differ between DA and SA journals. Moreover, female-leading articles did not increase after changes from SA to DA peer-review. Tackling female underrepresentation in science is a complex task requiring many interventions. Still, our results highlight that adopting the DA peer-review system alone could be insufficient in fostering gender equality in EcoEvo scientific publications. Ecologists and evolutionists understand how diversity is important to ecosystems’ resilience in facing environmental changes. The question remaining is: why is it so difficult to promote and keep this “diversity” in addition to equity and inclusion in the academic environment? We thus argue that all scientists, mentors, and research centers must be engaged in promoting solutions to gender bias by fostering diversity, inclusion, and affirmative measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.