Background and purposeThe Pipeline Embolization Device (PED) has become a routine first-line option for treatment of intracranial aneurysms (IAs). We assessed the early safety and technical success of a new version of PED, Pipeline Flex Embolization Device with Shield Technology (Pipeline Shield), which has the same design and configuration but has been modified to include a surface synthetic biocompatible polymer.Materials and methodsThe Pipeline Flex Embolization Device with Shield Technology (PFLEX) study is a prospective, single-arm, multicenter study for the treatment of unruptured IAs using Pipeline Shield. The primary study endpoints included the occurrence of major stroke in the territory supplied by the treated artery or neurologic death at 1 year post-procedure. Secondary endpoints included the rate of Pipeline Shield-related or procedure-related serious or non-serious adverse events. Analyses were conducted to evaluate early safety findings in the 30-day post-procedure period as well as technical procedural success outcomes.ResultsFifty patients with 50 unruptured target IAs were enrolled. Mean aneurysm diameter was 8.82±6.15 mm. Thirty-eight aneurysms (76%) were small (<10 mm). Device deployment was technically successful with 98% of devices. Complete wall apposition was achieved immediately post-procedure in 48 cases (96%). No major strokes or neurologic deaths were reported in the 30-day post-procedure period.ConclusionsThe results of this first experience with the new Pipeline Flex corroborate the early safety of the device. Mid-term and long-term follow-up examinations will provide data on safety outcomes at the 6-month and 1-year follow-up periods. Clinical trial registrationNCT02390037.
PurposeThe Pipeline Embolization Device (PED) is a routine first-line treatment option for intracranial aneurysms (IAs). The Pipeline Flex Embolization Device with Shield Technology (Pipeline Shield) is an updated version of the PED which has been modified to include a surface phosphorylcholine biocompatible polymer. Its early technical success and safety have been reported previously. Here, we assessed the long-term safety and efficacy of the Pipeline Shield for the treatment of IAs.Materials and methodsThe Pipeline Flex Embolization Device with Shield Technology (PFLEX) study was a prospective, single-arm, multicenter study for the treatment of unruptured IAs using the Pipeline Shield. The primary endpoint was a major stroke in the territory supplied by the treated artery or neurologic death at 1-year post-procedure. Angiographic outcomes were also assessed by an independent radiology laboratory at 6 months and 1 year.ResultsFifty patients (mean age, 53 years; 82% female) with 50 unruptured IAs were treated. Mean aneurysm diameter was 8.82±6.15 mm. Of the target aneurysms, 38/50 (76%) were small (<10 mm), 11/50 (22%) were large (≥10 and<25 mm), and 1/50 (2%) was giant (≥25 mm). Forty-seven (94%) were located in the internal carotid artery and three (6%) in the vertebral artery. At 1-year post-procedure, no major strokes or neurologic deaths were reported, and complete occlusion was achieved in 27/33 (81.8%). There were no instances of aneurysm recurrence or retreatment.ConclusionsOur 1-year follow-up concerning angiographic and safety outcomes corroborate previous evidence that the Pipeline Shield is a safe and effective treatment for IAs.Trial registration numberNCT02390037
Our data support the use of a flow diversion technique as a safe and effective therapeutic modality for BBA of the supraclinoid ICA.
Background and Purpose: Acute ischemic stroke and large vessel occlusion can be concurrent with the coronavirus disease 2019 (COVID-19) infection. Outcomes after mechanical thrombectomy (MT) for large vessel occlusion in patients with COVID-19 are substantially unknown. Our aim was to study early outcomes after MT in patients with COVID-19. Methods: Multicenter, European, cohort study involving 34 stroke centers in France, Italy, Spain, and Belgium. Data were collected between March 1, 2020 and May 5, 2020. Consecutive laboratory-confirmed COVID-19 cases with large vessel occlusion, who were treated with MT, were included. Primary investigated outcome: 30-day mortality. Secondary outcomes: early neurological improvement (National Institutes of Health Stroke Scale improvement ≥8 points or 24 hours National Institutes of Health Stroke Scale 0–1), successful reperfusion (modified Thrombolysis in Cerebral Infarction grade ≥2b), and symptomatic intracranial hemorrhage. Results: We evaluated 93 patients with COVID-19 with large vessel occlusion who underwent MT (median age, 71 years [interquartile range, 59–79]; 63 men [67.7%]). Median pretreatment National Institutes of Health Stroke Scale and Alberta Stroke Program Early Computed Tomography score were 17 (interquartile range, 11–21) and 8 (interquartile range, 7–9), respectively. Anterior circulation acute ischemic stroke represented 93.5% of cases. The rate modified Thrombolysis in Cerebral Infarction 2b to 3 was 79.6% (74 patients [95% CI, 71.3–87.8]). Thirty-day mortality was 29% (27 patients [95% CI, 20–39.4]). Early neurological improvement was 19.5% (17 patients [95% CI, 11.8–29.5]), and symptomatic intracranial hemorrhage was 5.4% (5 patients [95% CI, 1.7–12.1]). Patients who died at 30 days exhibited significantly lower lymphocyte count, higher levels of aspartate, and LDH (lactate dehydrogenase). After adjustment for age, initial National Institutes of Health Stroke Scale, Alberta Stroke Program Early Computed Tomography score, and successful reperfusion, these biological markers remained associated with increased odds of 30-day mortality (adjusted odds ratio of 2.70 [95% CI, 1.21–5.98] per SD-log decrease in lymphocyte count, 2.66 [95% CI, 1.22–5.77] per SD-log increase in aspartate, and 4.30 [95% CI, 1.43–12.91] per SD-log increase in LDH). Conclusions: The 29% rate of 30-day mortality after MT among patients with COVID-19 is not negligible. Abnormalities of lymphocyte count, LDH and aspartate may depict a patient’s profiles with poorer outcomes after MT. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT04406090.
OBJECT Flow-diversion treatment has been shown to be associated with high rates of angiographic obliteration; however, the treatment is relatively contraindicated in the acute phase following subarachnoid hemorrhage (SAH) as these patients require periprocedural dual antiplatelet therapy. Acute coiling followed by flow diversion has emerged as an intriguing and feasible treatment option for ruptured complex and giant aneurysms. In this study the authors report outcomes and complications of patients with ruptured aneurysms undergoing coiling in the acute phase followed by planned delayed flow diversion. METHODS This case series includes patients from 2 institutions. All patients underwent standard endovascular coiling in the acute phase after SAH with the intention and plan to proceed with flow diversion at a later date. Outcomes studied included angiographic occlusion, procedure-related complications, and long-term clinical outcome as measured using the modified Rankin Scale. RESULTS A total of 31 patients underwent coiling in the acute phase with the intention to undergo flow diversion at a later date. The mean aneurysm size was 15.8 ± 7.9 mm. Of the 31 patients undergoing coiling, 4 patients could not undergo further flow-diverter therapy: 3 patients (9.7%) died of complications of subarachnoid hemorrhage and 1 patient had permanent morbidity as a result of perioperative ischemic stroke (3.1%). Twenty-seven patients underwent staged placement of flow diverters after adequate recovery. The median time to treatment was 16 weeks. There was one case of aneurysm rebleeding following coil treatment. There were no cases of permanent morbidity or mortality resulting from flow-diverter treatment. Twenty-four patients underwent imaging follow-up; 18 of these patients had aneurysms that were completely or nearly completely occluded (58.1% on an intent-to-treat basis). At last follow-up (mean 18.3 months), 25 patients had mRS scores ≤ 2 (80.6% on an intent-to-treat basis). CONCLUSIONS Staged treatment of ruptured complex and giant intracranial aneurysms with coiling in the acute phase and flow-diverter treatment following recovery from SAH is both safe and effective. In this series, no cases of rebleeding occurred during the interval between coiling and flow diversion. This strategy should be considered as a valid option in patients presenting with these challenging ruptured aneurysms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.