Delamination propagation in laminated composite materials is a common issue that always concerns us when we consider composites for structural purpose. Many possible solutions have been studied; the most famous is the three-dimensional (3D) woven composites materials, which have promising interlaminar fracture resistance but at the cost of increasing density, which for aerospace industry is very important. In this chapter, mode 1 double cantilever beam (DCB) interlaminar fracture toughness tests according to the American Society for Testing and Materials (ASTM) D5528 standard were performed on composite specimens made of E-Glass Saertex 830 g/m2 Biaxial (+/−45°) with Sypol 8086 CCP polyester resin with orthogonal z-axis oriented yarn woven of 0.22 mm diameter nylon monofilament. Four specimens were made with a longitudinal distance between the warp binders of 0.5, 1, 1.5, and 2 cm, respectively. A tensile test according to the ASTM D3039 standard was performed to study how z-binder may affect tensile resistance. The results show a considerable increase in interlaminar fracture toughness, several stress concentrators have been created because of the new yarn and premature failure in the matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.