Intestinal barrier derangement allows intestinal bacteria and their products to translocate to the systemic circulation. Pseudomonas aeruginosa (PA) superimposed infection in critically ill patients increases gut permeability and leads to gut-driven sepsis. PA infections are challenging due to multi-drug resistance (MDR), biofilms, and/or antibiotic tolerance. Inhibition of the quorum-sensing transcriptional regulator MvfR(PqsR) is a desirable anti-PA anti-virulence strategy as MvfR controls multiple acute and chronic virulence functions. Here we show that MvfR promotes intestinal permeability and report potent anti-MvfR compounds, the N-Aryl Malonamides (NAMs), resulting from extensive structure-activity-relationship studies and thorough assessment of the inhibition of MvfR-controlled virulence functions. This class of anti-virulence non-native ligand-based agents has a half-maximal inhibitory concentration in the nanomolar range and strong target engagement. Using a NAM lead in monotherapy protects murine intestinal barrier function, abolishes MvfR-regulated small molecules, ameliorates bacterial dissemination, and lowers inflammatory cytokines. This study demonstrates the importance of MvfR in PA-driven intestinal permeability. It underscores the utility of anti-MvfR agents in maintaining gut mucosal integrity, which should be part of any successful strategy to prevent/treat PA infections and associated gut-derived sepsis in critical illness settings. NAMs provide for the development of crucial preventive/therapeutic monotherapy options against untreatable MDR PA infections.
Burn-site infections, commonly due to Pseudomonas aeruginosa , have been associated with deranged intestinal integrity, allowing bacteria and their products to translocate from the gut to the circulatory system. The P. aeruginosa quorum sensing (QS) transcription factor MvfR (PqsR) controls the expression of numerous virulence factors, and the synthesis of several toxic products. However, the role of QS in intestinal integrity alterations, to the best of our knowledge, has not been previously investigated. Using a proven anti-MvfR, anti-virulence agent, the in vivo results of the present study revealed that inhibition of MvfR function significantly decreased Fluorescein Isothiocyanate-Dextran (FITC-Dextran) flow from the intestine to the systemic circulation, diminished bacterial translocation from the intestine to mesenteric lymph nodes (MLNs), and improved tight junction integrity in thermally injured and infected mice. In addition, the MvfR antagonist administration alleviates the intestinal inflammation, as demonstrated by reduced ileal TNF-α and fecal lipocalin-2 concentrations. In addition, it is associated with lower levels of circulating endotoxin and decreased P. aeruginosa dissemination from the burn wound to the ileum. Collectively, these results hold great promise that the inhibition of this QS system mitigates gut hyperpermeability by attenuating the derangement of morphological and immune aspects of the intestinal barrier, suggesting that MvfR function is crucial in the deterioration of intestinal integrity following P. aeruginosa burn-site infection. Therefore, an anti-virulence approach targeting MvfR, could potentially offer a novel therapeutic approach against multi-drug resistant P. aeruginosa infections following thermal injuries. Since this approach is targeting virulence pathways that are non-essential for growth or viability, our strategy is hypothesized to minimize the development of bacterial resistance, and preserve the beneficial enteric microbes, while improving intestinal integrity that is deranged as a result of burn and infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.