In this paper we consider a fractional wave equation for hypoelliptic operators with a singular mass term depending on the spacial variable and prove that it has a very weak solution. Such analysis can be conveniently realised in the setting of graded Lie groups. The uniqueness of the very weak solution, and the consistency with the classical solution are also proved, under suitable considerations. This extends and improves the results obtained in the first part [Altybay et al. Fractional Klein-Gordon equation with singular mass. Chaos Solitons Fractals. 2021;143:Article ID 110579] which was devoted to the classical Euclidean Klein-Gordon equation.
In this paper we show a number of logarithmic inequalities on several classes of Lie groups: log-Sobolev inequalities on general Lie groups, log-Sobolev (weighted and unweighted), log-Gagliardo-Nirenberg and log-Caffarelli-Kohn-Nirenberg inequalities on graded Lie groups. Furthermore, on stratified groups, we show that one of the obtained inequalities is equivalent to a Grosstype log-Sobolev inequality with the horizontal gradient. As a result, we obtain the Gross log-Sobolev inequality on general stratified groups but, very interestingly, with the Gaussian measure on the first stratum of the group. Moreover, our methods also yield weighted versions of the Gross log-Sobolev inequality. In particular, we also obtain new weighted Gross-type log-Sobolev inequalities on R n for arbitrary choices of homogeneous quasi-norms. As another consequence we derive the Nash inequalities on graded groups and an example application to the decay rate for the heat equations for sub-Laplacians on stratified groups. We also obtain weighted versions of log-Sobolev and Nash inequalities for general Lie groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.