Preharvest information on the quality of Scots pine (Pinus sylvestris) timber is required by the forest industry in Nordic countries, due to the strong association between the technical quality and product recovery of this species in particular. The objective of this study was to assess the accuracy of estimating external quality attributes and classifying the quality of mature Scots pine trees by terrestrial laser scanning (TLS). The tree quality was estimated using a random forest approach, based on both field and TLS measurements of stem diameters, tree height and branch heights. The relative root mean squared errors of the TLS measurements for tree height, diameter, diameter at 6 m and the lowest living and
OPEN ACCESSForests 2014, 5 1880 dead branch height were 7.1%, 5.9%, 8.9%, 9.6% and 42.9%, respectively. The highest errors of the branch heights were caused by the shadowing effect in the point cloud data. The quality classes were estimated accurately, based on both (field and TLS measured) tree attributes. Trees were classified with 95.0% and 83.6% accuracy into three operationally-important quality classes and with 87.1% and 76.4% accuracy into five classes using, field or TLS measurements, respectively. The obtained quality classification results were promising. The enhanced tree quality information could have a significant effect on planning forest management procedures, wood supply chains and optimizing the flow of raw materials. To fully integrate tree quality measurements in operational forestry, the methods used should be fully automated.
Predicting tree structure from tree height using terrestrial laser scanning and quantitative structure models Krooks A., Kaasalainen S., Kankare V., Joensuu M., Raumonen P., Kaasalainen M. (2014). Predicting tree structure from tree height using terrestrial laser scanning and quantitative structure models. Silva Fennica vol. 48 no. 2 article id 1125. 11 p.
Highlights• The analysis of tree structure suggests that trees of different height growing in similar conditions have similar branch size distributions.• There is potential for using the tree height information in large-scale estimations of forest canopy structure.
AbstractWe apply quantitative structure modelling to produce detailed information on branch-level metrics in trees. Particularly we are interested in the branch size distribution, by which we mean the total volume of branch parts distributed over the diameter classes of the parts. We investigate the possibility of predicting tree branch size distributions for trees in similar growing conditions. The quantitative structure model enables for the first time the comparisons of structure between a large number of trees. We found that the branch size distribution is similar for trees of different height in similar growing conditions. The results suggest that tree height could be used to estimate branch size distribution in areas with similar growing conditions and topography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.