Background Homozygotic mutations in the GBA gene cause Gaucher’s disease; moreover, both patients and heterozygotic carriers have been associated with 20- to 30-fold increased risk of developing Parkinson’s disease. In homozygosis, these mutations impair the activity of β-glucocerebrosidase, the enzyme encoded by GBA, and generate a lysosomal disorder in macrophages, which changes morphology towards an engorged phenotype, considered the hallmark of Gaucher’s disease. Notwithstanding the key role of macrophages in this disease, most of the effects in the brain have been attributed to the β-glucocerebrosidase deficit in neurons, while a microglial phenotype for these mutations has never been reported. Methods We applied the bioluminescence imaging technology, immunohistochemistry and gene expression analysis to investigate the consequences of microglial β-glucocerebrosidase inhibition in the brain of reporter mice, in primary neuron/microglia cocultures and in cell lines. The use of primary cells from reporter mice allowed for the first time, to discriminate in cocultures neuronal from microglial responses consequent to the β-glucocerebrosidase inhibition; results were finally confirmed by pharmacological depletion of microglia from the brain of mice. Results Our data demonstrate the existence of a novel neuroprotective mechanism mediated by a direct microglia-to-neuron contact supported by functional actin structures. This cellular contact stimulates the nuclear factor erythroid 2-related factor 2 activity in neurons, a key signal involved in drug detoxification, redox balance, metabolism, autophagy, lysosomal biogenesis, mitochondrial dysfunctions, and neuroinflammation. The central role played by microglia in this neuronal response in vivo was proven by depletion of the lineage in the brain of reporter mice. Pharmacological inhibition of microglial β-glucocerebrosidase was proven to induce morphological changes, to turn on an anti-inflammatory/repairing pathway, and to hinder the microglia ability to activate the nuclear factor erythroid 2-related factor 2 response, thus increasing the neuronal susceptibility to neurotoxins. Conclusion This mechanism provides a possible explanation for the increased risk of neurodegeneration observed in carriers of GBA mutations and suggest novel therapeutic strategies designed to revert the microglial phenotype associated with β-glucocerebrosidase inhibition, aimed at resetting the protective microglia-to-neuron communication.
Homozygotic mutations in the GBA gene cause Gaucher’s disease, moreover, both patients and heterozygotic carriers have been associated with 20- to 30-fold increased risk of developing Parkinson’s disease. In homozygosis, these mutations impair the activity of β-glucocerebrosidase, the enzyme encoded by GBA, and generate a lysosomal disorder in macrophages, which changes morphology towards an engorged phenotype, considered the hallmark of Gaucher’s disease. In the brain, most of the pathological effects caused by GBA mutations have been attributed to the β-glucocerebrosidase deficit in neurons, while a microglial phenotype for these mutations has never been reported. Here, we applied the bioluminescence imaging technology, immunohistochemical and gene expression analysis to investigate the consequences of microglial β-glucocerebrosidase inhibition in the brain of reporter mice, in primary neuron/microglia co-cultures and in cell lines. Our data demonstrate the existence of a novel mechanism by which microglia sustain the antioxidant/detoxifying response mediated by the nuclear factor erythroid 2-related factor 2 in neurons. The central role played by microglia in this neuronal response in vivo was proven by pharmacological depletion of the lineage in the brain, while co-cultures experiments provided insight on the nature of this cell-to-cell communication showing that this mechanism requires a direct microglia-to-neuron contact supported by functional actin structures. Pharmacological inhibition of microglial β-glucocerebrosidase was proven to induce morphological changes, turn on an anti-inflammatory/repairing pathway and hinder the microglia ability to activate the anti-oxidant/detoxifying response, thus increasing the neuronal susceptibility to neurotoxins.Altogether, our data suggest that microglial β-glucocerebrosidase inhibition impairs microglia-to-neuron communication increasing the sensitivity of neurons to oxidative or toxic insults, thus providing a possible mechanism for the increased risk of neurodegeneration observed in carriers of GBA mutations.Graphical AbstractIn BriefMicroglia, through actin-dependent structures, contact neurons and induce a detoxification response by increasing the NFE2L2 signalling pathway. Inhibition of GCase activity by CBE treatment produces a morpho-functional change in microglia cells hampering the neuroprotective microglia-neuron communication thus inducing a phenotype in dopaminergic neurons characterized by increased susceptibility to oxidative stress or toxic insults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.