Structures with one-dimensional quantum objects in intermediate band are promising for their application in solar cells and photodetectors. We present analysis of dark current-voltage characteristics, photo-voltage decay and photo-voltage spectra for this structures in comparison with reference GaAs based structures. It has been shown that InGaAs quantum wires make a significant influence on J-V dependences and photo-voltage spectra. InGaAs QWRS are additional recombination centers and transitions between them dominated over by Shockley-Read-Hall recombination at low bias.The InGaAs/GaAs sample shows a significantly higher photo-voltage in the spectral range of 1.25-1.37 eV, as compared to a reference GaAs p-n junction, due to intermediate band transitions in the quantum wires.
Materials with one-dimensional quantum structures are promising for their application in solar cells. The photo-voltage generation of these structures is caused by spatial separation of electron-hole pairs by a built-in electric field in the GaAs p-i-n junction. The InGaAs/GaAs sample shows a significantly higher photo-voltage in the spectral range of 1.25-1.37 eV, as compared to a reference GaAs p-n junction, due to interband transitions in the quantum wires (QWRs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.