Qualitative and quantitative testing of circulating cell free DNA (CCFDNA) can be applied for the management of malignant and benign neoplasms. Detecting circulating DNA in cancer patients may help develop a DNA profile for early stage diagnosis in malignancies. The technical issues of obtaining, using, and analyzing CCFDNA from blood will be discussed.
Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT) in tumor cell progression, invasion, and metastasis. During the process of EMT, epithelial cancer cells acquire molecular alternations that facilitate the loss of epithelial features and gain of mesenchymal phenotype. Such transformation promotes cancer cell migration and invasion. Moreover, emerging evidence suggests that EMT is associated with the increased enrichment of cancer stem-like cells (CSCs) and these CSCs display mesenchymal characteristics that are resistant to chemotherapy and target therapy. However, the clinical relevance of EMT in human cancer is still under debate. This review will provide an overview of current evidence of EMT from studies using clinical human breast cancer tissues and its associated challenges.
BackgroundTriple-negative breast cancer (TNBC) is the most aggressive type of breast cancer that lacks ER/PR and HER2 receptors. Hence, there is urgency in developing new or novel therapeutic strategies for treatment of TNBC. Our study shows that the Monocyte Chemoattractant Protein-1 (MCP-1) is a marker associated with TNBC and may play a key role in TNBC disease progression.Experimental designELISA method was used to measure secreted MCP-1, and mRNA levels were determined by Real-time PCR in numerous cancer cell lines, representing various breast cancer subtypes. Cellular invasiveness was determined by Boyden chamber assay.ResultsOur data show that MCP-1 is upregulated in TNBC cell lines both transcriptionally as well as in secreted protein levels compared to ER-positive luminal cell line, MCF-7. Breast cancer patients, with Basal or Claudin-low subtypes, also showed high expression of MCP-1. MCP-1 treatment induced cell invasion in various breast cancer cell types, without affecting cell proliferation. Small molecule antagonists against Chemokine Receptor 2 (CCR2), cognate receptor for MCP-1 as well as the MAP kinase pathway inhibitor U0126 negatively affected MCP-1 induced MCF-7 cell invasion. This suggests that MCP-1-CCR2 axis may regulate invasiveness via the MAP Kinase pathway. Knocking down MCP-1 decreased cell invasion in TNBC cell line BT-549, along with downregulation of key epithelial to mesenchymal transition markers, N-cadherin and Vimentin.ConclusionOur study suggests that MCP-1 mediated pathways could be potential therapeutic targets for the treatment of TNBC, and could reduce cancer health disparities.Electronic supplementary materialThe online version of this article (10.1007/s10549-018-4760-8) contains supplementary material, which is available to authorized users.
BackgroundAfrican-American women have higher mortality from breast cancer than other ethnic groups. The association between poor survival and differences with tumor phenotypes is not well understood. The purpose of this study is to assess the clinical significance of (1) Stem cell-like markers CD44 and CD24; (2) PI3K/Akt pathway associated targets PTEN, activation of Akt, and FOXO1; and (3) the Insulin-like growth factor-1 (IGF-I) and IGF binding protein-3 (IGFBP3) in different breast cancer subtypes, and compare the differences between African-American and Hispanic/Latina women who have similar social-economic-status.MethodsA total of N=318 African-American and Hispanic/Latina women, with clinically-annotated information within the inclusion criteria were included. Formalin fixed paraffin embedded tissues from these patients were tested for the different markers using immunohistochemistry techniques. Kaplan-Meier survival-curves and Cox-regression analyses were used to assess Relative Risk and Disease-Free-Survival (DFS).ResultsThe triple-negative-breast-cancer (TNBC) receptor-subtype was more prevalent among premenopausal women, and the Hormonal Receptor (HR) positive subtype was most common overall. TNBC tumors were more likely to have loss of PTEN, express high Ki67, and have increased CD44+/CD24- expression. TNBC was also associated with higher plasma-IGF-I levels. HR-/HER2+ tumors showed high pAkt, decreased FOXO1, and high CD24+ expression. The loss of PTEN impacted DFS significantly in African Americans, but not in Hispanics/Latinas after adjusted for treatment and other tumor pathological factors. The CD44+/CD24- and CD24+/CD44- phenotypes decreased DFS, but were not independent predictors for DFS. HER2-positive and TNBC type of cancers continued to exhibit significant decrease in DFS after adjusting for the selected biomarkers and treatment.ConclusionsTNBC incidence is high among African-American and Hispanic/Latino women residing in South Los Angeles. Our study also shows for the first time that TNBC was significantly associated with PTEN loss, high Ki67 and the CD44+/CD24- phenotype. The loss of PTEN impacts DFS significantly in African Americans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.