Loss of the PTEN tumor suppressor gene occurs frequently in non-small-cell lung carcinoma (NSCLC), although neither genetic alterations nor epigenetic silencing are significant predictors of PTEN protein levels. Since recent reports implicated neural precursor cell expressed, developmentally down-regulated 4-1 (NEDD4-1) as the E3 ubiquitin ligase that regulates PTEN stability, we investigated the role of NEDD4-1 in the regulation of PTEN expression in cases of NSCLC. Our findings indicate that NEDD4-1 plays a critical role in the development of NSCLC and provides novel insight on the mechanisms that contribute to inactivate PTEN in lung cancer. Immunohistochemical analysis on tissue microarrays containing 103 NSCLC resections revealed NEDD4-1 overexpression in 80% of tumors, which correlated with the loss of PTEN protein (n ؍ 98; P < 0.001). Accordingly, adoptive NEDD4-1 expression in NSCLC cells decreased PTEN protein stability, whereas knock-down of NEDD4-1 expression decreased PTEN ubiquitylation and increased PTEN protein levels. In 25% of cases, NEDD4-1 overexpression was due to gene amplification at 15q21. In addition, manipulation of NEDD4-1 expression in different lung cell systems demonstrated that suppression of NEDD4-1 expression significantly reduced proliferation of NSCLC cells in vitro and tumor growth in vivo, whereas NEDD4-1 overexpression facilitated anchorage-dependent and independent growth in vitro of nontransformed lung epithelial cells that lack pRB and TP53 (BEAS-2B). NEDD4-1 overexpression also augmented the tumorigenicity of lung cancer cells that have an intact PTEN gene (NCI-H460 cells).
Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G→A transition at nucleotide 49 (that results in the E17K substitution) in two squamous cell carcinoma (2/36) but not in adenocarcinoma (0/53). The activity of the endogenous kinase carrying the E17K mutation immunoprecipitated by tumour tissue was significantly higher compared with the wildtype kinase immunoprecipitated by the adjacent normal tissue as determined both by in vitro kinase assay using a consensus peptide as substrate and by in vivo analysis of the phosphorylation status of AKT1 itself (pT308, pS473) or of known downstream substrates such as GSK3 (pS9/S22) and p27 (T198). Immunostaining or immunoblot analysis on membrane-enriched extracts indicated that the enhanced membrane localization exhibited by the endogenous E17K-AKT1 may account for the observed increased activity of mutant E17K kinase in comparison with the wild-type AKT1 from adjacent normal tissue. In conclusion, this is the first report of AKT1 mutation in lung cancer. Our data provide evidence that, although AKT1 mutations are apparently rare in lung cancer (1.9%), the oncogenic properties of E17K-AKT1 may contribute to the development of a fraction of lung carcinoma with squamous histotype (5.5%).
Aberrant activation of PI3K/AKT signalling represents one of the most common molecular alterations in lung cancer, though the relative contribution of the single components of the cascade to the NSCLC development is still poorly defined. In this manuscript we have investigated the relationship between expression and genetic alterations of the components of the PI3K/AKT pathway [KRAS, the catalytic subunit of PI3K (p110α), PTEN, AKT1 and AKT2] and the activation of AKT in 107 surgically resected NSCLCs and have analyzed the existing relationships with clinico-pathologic features. Expression analysis was performed by immunohistochemistry on Tissue Micro Arrays (TMA); mutation analysis was performed by DNA sequencing; copy number variation was determined by FISH. We report that activation of PI3K/AKT pathway in Italian NSCLC patients is associated with high grade (G3–G4 compared with G1–G2; n = 83; p<0.05) and more advanced disease (TNM stage III vs. stages I and II; n = 26; p<0.05). In addition, we found that PTEN loss (41/104, 39%) and the overexpression of p110α (27/92, 29%) represent the most frequent aberration observed in NSCLCs. Less frequent molecular lesions comprised the overexpression of AKT2 (18/83, 22%) or AKT1 (17/96, 18%), and KRAS mutation (7/63, 11%). Our results indicate that, among all genes, only p110α overexpression was significantly associated to AKT activation in NSCLCs (p = 0.02). Manipulation of p110α expression in lung cancer cells carrying an active PI3K allele (NCI-H460) efficiently reduced proliferation of NSCLC cells in vitro and tumour growth in vivo. Finally, RNA profiling of lung epithelial cells (BEAS-2B) expressing a mutant allele of PIK3 (E545K) identified a network of transcription factors such as MYC, FOS and HMGA1, not previously recognised to be associated with aberrant PI3K signalling in lung cancer.
The aim of the present work was to identify protein tyrosine phosphatases (PTPs) as novel, candidate tumor suppressor genes in lung cancer. Among the 38 PTPs in the human genome that show specificity for phosphotyrosine, we identified six PTPs by quantitative RT-PCR whose mRNA expression levels were significantly down-regulated in lung cancer-derived cell lines (ie, PTPRE, PTPRF, PTPRU, PTPRK, PTPRD, and PTPN13). After validation in primary samples of non-small cell lung cancer (NSCLC), we selected PTPN13 for further studies. The results presented here demonstrate that PTPN13 is a candidate tumor suppressor gene that is frequently inactivated in NSCLC through the loss of either mRNA and protein expression (64/87, 73%) or somatic mutation (approximately 8%). Loss of PTPN13 expression was apparently due to the loss of one or both copies of the PTPN13 locus at 4q (approximately 26% double deletion and approximately 37% single deletion) but not to promoter methylation. Finally, the manipulation of PTPN13 expression in lung cancer cells (ie, NCI-H292, A549) demonstrated that PTPN13 negatively regulates anchorage-dependent and anchorage-independent growth in vitro and restrains tumorigenicity in vivo, possibly through the control of the tyrosine phosphorylation of both EGFR and HER2. In conclusion, the expression screening of PTPs in lung cancer reported here has identified PTPN13 as a novel candidate tumor suppressor in NSCLC whose loss increases signaling from epidermal growth factor receptor and HER2 tyrosine kinase receptors.
Objective: The aim of this study was to investigate the presence of germline mutations in the CDKN1B gene that encodes the cyclin-dependent kinase (Cdk) inhibitor p27 in multiple endocrine neoplasia 1 (MEN1)-like Spanish index patients. The CDKN1B gene has recently been identified as a tumor susceptibility gene for MEN4, with six germline mutations reported so far in patients with a MEN-like phenotype but negative for MEN1 mutations. Design and methods: Fifteen Spanish index cases with MEN-like symptoms were screened for mutations in the CDKN1B gene and the mutant variant was studied functionally by transcription/translation assays in vitro and in transiently transfected HeLa cells. Results: We report the identification of a heterozygous GAGA deletion in the 5 0 -UTR of CDKN1B, NM_004064.3:c.-32_-29del, in a patient affected by gastric carcinoid tumor and hyperparathyroidism. This deletion falls inside the region that is responsible for CDKN1B transcription and is predicted to destroy a secondary stem and loop structure that includes the GAGAGA element responsible for ribosome recruitment. Accordingly, in vitro studies of coupled transcription/translation assays and transient transfection in HeLa cells showed that the GAGA deletion in the CDKN1B 5 0 -UTR significantly impairs the transcription of downstream reporter luciferase (of w40-60%) and, possibly, the translation of the corresponding mRNA. This mutation was associated with a significant reduction in the amount of CDKN1B mRNA in peripheral blood leukocytes from the patient, as demonstrated by quantitative real-time PCR. Conclusions: Our results confirm that germline CDKN1B mutations may predispose to a human MEN4 condition and add novel evidence that alteration in the transcription/translation rate of CDKN1B mRNA might be the mechanism implicated in tumor susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.