The relevance of this study is determined by complete absence of serious research in the use of flipped learning model (FLM) in teaching students of engineering universities Descriptive Geometry, Engineering and Computer Graphics, Computer Geometry (DGECGCG); by the absence of scientifically-based, tried and tested programs and teaching materials for flipped DGECGCG learning; as well as by the need for the development of new, modern tools to support classroom work and forms of students' individual work. The purpose of the study is to examine the current state of knowledge and practice of existing DGECGCG courses, using the "flipped" concept as the main pedagogical strategy. Research methods of the issues were: pedagogical experiment, expert assessment (individual and collective) and cluster analysis (Euclidean distance, squared Euclidean distance, Ward's clustering methods). The experiment involved 25 first-year students of Electromechanical and Mining faculties and 4 lecturers of the Department of Descriptive Geometry and Graphics of the Saint Petersburg Mining University. The results showed that since 2012, flipped learning has gained popularity not only among school teachers, but among professors of engineering universities. This article represents a synthesis of qualitative and quantitative researches of flipped learning models in the field of engineering education; students' attitude towards flipped learning, the role of teaching materials as well as the role of professor's personality have been identified. Advantages and disadvantages of this learning model have been revealed. The study proved the absence of scientifically-based and tried and tested programs and instructional materials for teaching students DGECGCG using FLM. The need of further scientific researches of flipped DGECGCG learning models has been identified. Recommendations for training students have been provided. The materials of the article can be useful for Professors in the field of engineering. M. V. Voronina et al. / Systematic Review of a Flipped Learning Model in DGECGCG 4832
The paper discussed challenges of the rapidly developing, advancing and updating Information and Communication Technology (ICT) from the point of view of social philosophy. Information and communication technology implies unique knowledge, methodologies, models, and problems that are not easily addressed by the existing Russian sociologists and philosophers, and hence there is a need to study one of the challenges as a subject. Advances in Information and Communication Technology and its accompanying impacts on the society development have led researchers to consider the social and philosophical interpretation of the problem concerning the development of new social reality in the context of information and communication technologies. The study has been based on the methodological principles of social philosophy, transdisciplinary research strategy, the concept of neuromarketing, the concept of neurosociology, and the concept of social reality simulation. The authors considered the problem as a current critical turning point of the history on the basis of interdisciplinary, global approach used to understand the processes penetrating into almost all spheres of life and life support systems and into the development of new institutions related to human development innovations. The survey resulted in the developing a theoretical model to study the role of dynamically developing information and communication technologies in new social reality. Materials of the article confirm the main knowledge increment obtained while studying the challenges is concerned with the role of information and communication technologies in creating and constructing new social reality.
The relevance and feasibility of this study are determined by the absence of serious, scientific research, as well as teaching materials, when it comes to the use of Augmented Reality (AR) in teaching students and future teachers Descriptive Geometry, Engineering and Computer Graphics (DGECG). The purpose of the study is to examine the current state of knowledge and practice of existing courses, which use the AR concept; to conduct a pedagogical experiment by teaching students how to create an information model of a building structure using the AR concept; to study the impact of the AR technology on students, lecturers, on the quality of students' design works and project presentation. The research methods used were a set of various, complementing each other methods, which can be divided into two groups: 1) theoretical: analysis of the teachers' and psychologists' works on the point of the research, analysis of methodological and educational literature; empirical: observation, statement, pedagogical experiment. The authors synthesized qualitative and quantitative AR research in the field of education. A team of students from Saint-Petersburg Mining University, Kazan (Volga region) Federal University and Financial University under the Government of the Russian Federation solved a design problem using AR and created an informational 3D-model of the structure. Existing methods of teaching students were supplemented and updated by the method of graphical presentation of the results, with due regard for AR-technologies. It has been found that at the present moment, the concept of AR has gained popularity not only among designers and planners, but also among schoolteachers, as well as among teachers at engineering universities. The absence of scientifically substantiated and proven programs and training materials for training students of DGECG using AR has also been confirmed. The necessity of further scientific research in the field of AR for DGECG has been substantiated. The article materials could prove to be useful for lecturers, schoolteachers and parents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.