Background: Current ablation therapy for atrial fibrillation is suboptimal, and long-term response is challenging to predict. Clinical trials identify bedside properties that provide only modest prediction of long-term response in populations, while patient-specific models in small cohorts primarily explain acute response to ablation. We aimed to predict long-term atrial fibrillation recurrence after ablation in large cohorts, by using machine learning to complement biophysical simulations by encoding more interindividual variability. Methods: Patient-specific models were constructed for 100 atrial fibrillation patients (43 paroxysmal, 41 persistent, and 16 long-standing persistent), undergoing first ablation. Patients were followed for 1 year using ambulatory ECG monitoring. Each patient-specific biophysical model combined differing fibrosis patterns, fiber orientation maps, electrical properties, and ablation patterns to capture uncertainty in atrial properties and to test the ability of the tissue to sustain fibrillation. These simulation stress tests of different model variants were postprocessed to calculate atrial fibrillation simulation metrics. Machine learning classifiers were trained to predict atrial fibrillation recurrence using features from the patient history, imaging, and atrial fibrillation simulation metrics. Results: We performed 1100 atrial fibrillation ablation simulations across 100 patient-specific models. Models based on simulation stress tests alone showed a maximum accuracy of 0.63 for predicting long-term fibrillation recurrence. Classifiers trained to history, imaging, and simulation stress tests (average 10-fold cross-validation area under the curve, 0.85±0.09; recall, 0.80±0.13; precision, 0.74±0.13) outperformed those trained to history and imaging (area under the curve, 0.66±0.17) or history alone (area under the curve, 0.61±0.14). Conclusion: A novel computational pipeline accurately predicted long-term atrial fibrillation recurrence in individual patients by combining outcome data with patient-specific acute simulation response. This technique could help to personalize selection for atrial fibrillation ablation.
Catheter ablation therapy for persistent atrial fibrillation (AF) typically includes pulmonary vein isolation (PVI) and may include additional ablation lesions that target patient-specific anatomical, electrical, or structural features. Clinical centers employ different ablation strategies, which use imaging data together with electroanatomic mapping data, depending on data availability. The aim of this study was to compare ablation techniques across a virtual cohort of AF patients. We constructed 20 paroxysmal and 30 persistent AF patientspecific left atrial (LA) bilayer models incorporating fibrotic remodeling from late-gadolinium enhancement (LGE) MRI scans. AF was simulated and post-processed using phase mapping to determine electrical driver locations over 15 s. Six different ablation approaches were tested: (i) PVI alone, modeled as wide-area encirclement of the pulmonary veins; PVI together with: (ii) roof and inferior lines to model posterior wall box isolation; (iii) isolating the largest fibrotic area (identified by LGE-MRI); (iv) isolating all fibrotic areas; (v) isolating the largest driver hotspot region [identified as high simulated phase singularity (PS) density]; and (vi) isolating all driver hotspot regions. Ablation efficacy was assessed to predict optimal ablation therapies for individual patients. We subsequently trained a random forest classifier to predict ablation response using (a) imaging metrics alone, (b) imaging and electrical metrics, or (c) imaging, electrical, and ablation lesion metrics. The optimal ablation approach resulting in termination, or if not possible atrial tachycardia (AT), varied among the virtual patient cohort: (i) 20% PVI alone, (ii) 6% box ablation, (iii) 2% largest fibrosis area, (iv) 4% all fibrosis areas, (v) 2% largest driver hotspot, and (vi) 46% all driver hotspots. Around 20% of cases remained in AF for all ablation strategies. The addition of patientspecific and ablation pattern specific lesion metrics to the trained random forest classifier improved predictive capability from an accuracy of 0.73 to 0.83. The trained classifier results demonstrate that the surface areas of pre-ablation driver regions and of fibrotic tissue not isolated by the proposed ablation strategy are both important for predicting ablation outcome. Overall, our study demonstrates the need to select the optimal ablation Roney et al.
Determining the optimal treatment approach for patients with atrial fibrillation (AF) is challenging as patient-specific mechanisms underlying the arrhythmia are typically unknown. Virtual patient cohort simulations can be used to investigate these mechanisms and the effects of atrial anatomy, electrical and structural substrate on potential AF ablation treatment outcomes. It is important that virtual cohort models are constructed using a consistent and reproducible approach regardless of the large variability in atrial morphology between patients. This allows comparison of virtual ablation outcomes between cases. In this study we developed a standardised pipeline for constructing personalised biophysical left atrial models using segmented late-gadolinium enhancement magnetic resonance imaging (LGE-MRI) data. Fibrotic remodelling was incorporated according to the distribution of LGE intensity values as changes in conductivity and ionic cell model properties. We present a methodology for simulating AF: seeding four spiral wave re-entries at standard locations across the anatomies; and for testing different ablation approaches across a large virtual patient cohort of personalised left atrial models. We simulated pulmonary vein isolation (PVI) ablation across a cohort of 20 paroxysmal and 30 persistent AF patient models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.