Tunicate embryos and larvae have small cell numbers and simple anatomical features in comparison with other chordates, including vertebrates. Although they branch near the base of chordate phylogenetic trees, their degree of divergence from the common chordate ancestor remains difficult to evaluate. Here we show that the tunicate Oikopleura dioica has a complement of nine Hox genes in which all central genes are lacking but a full vertebrate-like set of posterior genes is present. In contrast to all bilaterians studied so far, Hox genes are not clustered in the Oikopleura genome. Their expression occurs mostly in the tail, with some tissue preference, and a strong partition of expression domains in the nerve cord, in the notochord and in the muscle. In each tissue of the tail, the anteroposterior order of Hox gene expression evokes spatial collinearity, with several alterations. We propose a relationship between the Hox cluster breakdown, the separation of Hox expression domains, and a transition to a determinative mode of development.
The brain is the central organizer of food intake, matching the quality and quantity of the food sources with organismal needs. To ensure appropriate amino acid balance, many species reject a diet lacking one or several essential amino acids (EAAs) and seek out a better food source. Here, we show that, in Drosophila larvae, this behavior relies on innate sensing of amino acids in dopaminergic (DA) neurons of the brain. We demonstrate that the amino acid sensor GCN2 acts upstream of GABA signaling in DA neurons to promote avoidance of the EAA-deficient diet. Using real-time calcium imaging in larval brains, we show that amino acid imbalance induces a rapid and reversible activation of three DA neurons that are necessary and sufficient for food rejection. Taken together, these data identify a central amino-acid-sensing mechanism operating in specific DA neurons and controlling food intake.
Insulin signaling is a conserved feature in all metazoans. It evolved with the appearance of multicellularity, allowing primordial metazoans to respond to a greater diversity of environmental signals. The insulin signaling pathway is highly conserved in insects and particularly in Drosophila, where it has been extensively studied in recent years and shown to control metabolism, growth, reproduction, and longevity. Because misregulation of the insulin/IGF pathway in humans plays a role in many medical disorders, such as diabetes and various types of cancer, unraveling the regulation of insulin/IGF signaling using the power of a genetically tractable organism like Drosophila may contribute to the amelioration of these major human pathologies. Diabetes 55 (Suppl. 2):S5-S8, 2006
Homeodomain transcription factors are involved in many developmental processes and have been intensely studied in a few model organisms, such as mouse, Drosophila and Caenorhabditis elegans. Homeobox genes fall into 10 classes (ANTP, PRD, POU, LIM, TALE, SIX, Cut, ZFH, HNF1, Prox) and 89 different families/groups, all of which are present in vertebrates. Additional groups may be uncovered by further genome annotation, particularly of complex vertebrate genomes. Eight of these groups have been found only in vertebrates, but not in the genome of the tunicate Ciona intestinalis. The other 81 groups of homeobox gene that have been detected in vertebrates so far probably appeared during the early evolution of bilaterians or earlier, as they are also present outside the chordates. How the homeobox genes evolved during and after the main radiation of the bilaterians remains poorly understood, as only a few animal genomes have been sequenced completely. However, drastic changes have occurred at least in the lineage of C. elegans , such as loss of several Hox genes and Hox cluster fragmentation . Here we report considerable alterations of the homeobox gene complement in the tunicate lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.