Proline (Pro) accumulation occurs in various plant organisms in response to environmental stresses. To identify the signaling components involved in the regulation of Pro metabolism upon water stress in Arabidopsis (Arabidopsis thaliana), a pharmacological approach was developed. The role of phosphoinositide-specific phospholipases C (PLCs) in Pro accumulation was assessed by the use of the aminosteroid U73122, a commonly employed specific inhibitor of receptor-mediated PLCs. We found that U73122 reduced pyrroline-5-carboxylate synthetase transcript and protein as well as Pro levels in salt-treated seedlings. Inhibition of PLC activity by U73122 was quantified by measuring the decrease of inositol 1,4,5-trisphosphate (InsP 3 ) levels. Moreover, the utilization of diacylglycerol kinase and InsP 3 -gated calcium release receptor inhibitors suggested that InsP 3 or its derivatives are essential for Pro accumulation upon salt stress, involving calcium as a second messenger in ionic stress signaling. This observation was further supported by a partial restoration of Pro accumulation in salt-and U73122-treated seedlings after addition of extracellular calcium, or when calcium homeostasis was perturbed by cyclopiazonic acid, a blocker of plant type IIA calcium pumps. Taken together, our data indicate that PLC-based signaling is a committed step in Pro biosynthesis upon salinity but not in the case of mannitol stress. Calcium acts as a molecular switch to trigger downstream signaling events. These results also demonstrated the specific involvement of lipid signaling pathway to discriminate between ionic and nonionic stresses.
Summary
Many plants accumulate proline, a compatible osmolyte, in response to various environmental stresses such as water deficit and salinity. In some stress responses, plants generate hydrogen peroxide (H2O2) that mediates numerous physiological and biochemical processes. The aim was to study the relationship between stress‐induced proline accumulation and H2O2 production.
Using pharmacological and reverse genetic approaches in Arabidopsis thaliana, we investigated the role of NADPH oxidases, Respiratory burst oxidase homologues (Rboh), in the induction of proline accumulation was investigated in response to stress induced by either 200 mM NaCl or 400 mM mannitol.
Stress from NaCl or mannitol resulted in a transient increase in H2O2 content accompanied by accumulation of proline. Dimethylthiourea, a scavenger of H2O2, and diphenylene iodonium (DPI), an inhibitor of H2O2 production by NADPH oxidase, were found to significantly inhibit proline accumulation in these stress conditions. DPI also reduced the expression level of Δ1‐pyrroline‐5‐carboxylate synthetase, the key enzyme involved in the biosynthesis of proline. Similarly, less proline accumulated in knockout mutants lacking either AtRbohD or AtRbohF than in wild‐type plants in response to the same stresses.
Our data demonstrate that AtRbohs (A. thaliana Rbohs) contribute to H2O2 production in response to NaCl or mannitol stress to increase proline accumulation in this plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.