Melanomas are highly aggressive neoplasms resistant to most conventional therapies. These tumors result from the interaction of altered intracellular tumor suppressors and oncogenes with the microenvironment in which these changes occur. We previously demonstrated that physiologic skin hypoxia contributes to melanomagenesis in conjunction with Akt activation. Here we show that Notch1 signaling is elevated in human melanoma samples and cell lines and is required for Akt and hypoxia to transform melanocytes in vitro. Notch1 facilitated melanoma development in a xenograft model by maintaining cell proliferation and by protecting cells from stress-induced cell death. Hyperactivated PI3K/Akt signaling led to upregulation of Notch1 through NF-κB activity, while the low oxygen content normally found in skin increased mRNA and protein levels of Notch1 via stabilization of HIF-1α. Taken together, these findings demonstrate that Notch1 is a key effector of both Akt and hypoxia in melanoma development and identify the Notch signaling pathway as a potential therapeutic target in melanoma treatment.
Constitutive activation of Akt characterizes a high percentage of human melanomas and represents a poor prognostic factor of the disease. We show that Akt transforms melanocytes only in a hypoxic environment, which is found in normal skin. The synergy between Akt and hypoxia is HIF1alpha mediated. Inhibition of HIF1alpha decreases Akt transformation capacity in hypoxia and tumor growth in vivo, while overexpression of HIF1alpha allows anchorage-independent growth in normoxia and development of more aggressive tumors. Finally, we show that mTOR activity is necessary to maintain the transformed phenotype by sustaining HIF1alpha activity. Taken together, these findings demonstrate that Akt hyperactivation and HIF1alpha induction by normally occurring hypoxia in the skin significantly contribute to melanoma development.
Premature senescence in vitro has been attributed to oxidative stress leading to a DNA damage response. In the absence of oxidative damage that occurs at atmospheric oxygen levels, proliferation of untransformed cells continues for extended periods of time. We have investigated the role of the hypoxia-inducible factor 1␣ (HIF1␣) transcription factor in preventing senescence in aerobic and hypoxic conditions. Using embryonic fibroblasts from a conditional HIF1␣ knockout mouse, we found that loss of HIF1␣ under aerobic conditions significantly accelerated the onset of cellular senescence, and decreased proliferation under hypoxia. Furthermore, we identify the macrophage migration inhibitory factor (MIF) as a crucial effector of HIF1␣ that delays senescence. Inhibition of MIF phenocopies loss of HIF1␣. Our findings highlight a novel role for HIF1␣ under aerobic conditions, and identify MIF as a target responsible for this function.Supplemental material is available at http://www.genesdev.org.
Epidemiological studies have suggested that the concentration and composition of fecal bile acids are important determining factors in the etiology of colon cancer. However, the mechanism by which these compounds influence tumor development is not understood. To begin to elucidate their mechanism of action, four bile acids, cholic acid, chenodeoxycholic acid, deoxycholic acid (DCA), and ursodeoxycholic acid, were examined for their effects on the growth of several different tumor cell lines. We found that incubating cells with chenodeoxycholic acid or DCA caused morphological changes, seen by electron and light microscopy, that were characteristic of apoptosis, whereas incubating cells with ursodeoxycholic acid inhibited cell proliferation but did not induce apoptosis. Cholic acid had no discernible effect on cells. Notably, the apoptosis induced by DCA could be suppressed by inhibiting protein kinase C activity with calphostin C. These results indicate that different bile acids exhibit distinct biological activities and suggest that the cytotoxicity reported for DCA may be due to its capacity to induce apoptosis via a protein kinase C-dependent signaling pathway.
Lymphokine activity in seven myelin basic protein (MBP)-specific T cell clones was examined. All of the clones recognize MBP peptide 1-9 in the context of I-Au. A strong positive correlation was found between levels of lymphotoxin (LT) and tumor necrosis factor alpha (TNF-alpha) mRNA and biological activity on L929 cells and their capacity to induce paralysis, the clinical hallmark of experimental allergic encephalomyelitis (EAE). No correlation was found between interleukin-2 or gamma interferon production and encephalitogenicity. LT and/or TNF-alpha may play a central role in the pathogenesis of EAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.