Innate lymphoid cells (ILCs) are increasingly appreciated as important participants in homeostasis and inflammation. Substantial plasticity and heterogeneity among ILC populations have been reported. Here we have delineated the heterogeneity of human ILCs through single-cell RNA sequencing of several hundreds of individual tonsil CD127(+) ILCs and natural killer (NK) cells. Unbiased transcriptional clustering revealed four distinct populations, corresponding to ILC1 cells, ILC2 cells, ILC3 cells and NK cells, with their respective transcriptomes recapitulating known as well as unknown transcriptional profiles. The single-cell resolution additionally divulged three transcriptionally and functionally diverse subpopulations of ILC3 cells. Our systematic comparison of single-cell transcriptional variation within and between ILC populations provides new insight into ILC biology during homeostasis, with additional implications for dysregulation of the immune system.
SummaryTissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a− Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a– Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.
Cross-reactive CD4 + T cells that recognize SARS-CoV-2 are more commonly detected in the peripheral blood of unexposed individuals compared to SARS-CoV-2-reactive CD8 + T cells. However, large numbers of memory CD8 + T cells reside in tissues, feasibly harboring localized SARS-CoV-2-specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virusspecific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19. We found that SARS-CoV-2-specific memory CD4 + T cells could be found at similar frequencies in the tonsils and peripheral blood in unexposed individuals, whereas functional SARS-CoV-2-specific memory CD8 + T cells were almost only detectable in the tonsils. Tonsillar SARS-CoV-2-specific memory CD8 + T cells displayed a follicular homing and tissue-resident memory phenotype, similar to tonsillar Epstein-Barr virus-specific memory CD8 + T cells, but were functionally less potent than other virus-specific memory CD8 + T cell responses. The presence of pre-existing tissue-resident memory CD8 + T cells in unexposed individuals could potentially enable rapid sentinel immune responses against SARS-CoV-2.
Human innate lymphoid cells have been described to exist in different organs, with functional deregulation of these cells contributing to several disease states. Here, we performed the first detailed characterization of the phenotype, tissue-residency properties, and functionality of ILC1s, ILC2s, and ILC3s in the human adult and fetal liver. In addition, we investigated changes in the ILC compartment in liver fibrosis. A unique composition of tissue-resident ILCs was observed in nonfibrotic livers as compared with that in mucosal tissues, with NKp44 ILC3s accounting for the majority of total intrahepatic ILCs. The frequency of ILC2s, representing a small fraction of ILCs in nonfibrotic livers, increased in liver fibrosis and correlated directly with the severity of the disease. Notably, intrahepatic ILC2s secreted the profibrotic cytokine IL-13 when exposed to IL-33 and thymic stromal lymphopoetin (TSLP); these cytokines were produced by hepatocytes, hepatic stellate cells (HSCs), and Kupffer cells in response to TLR-3 stimulation. In summary, the present results provide the first detailed characterization of intrahepatic ILCs in human adult and fetal liver. The results indicate a role for ILC2s in human liver fibrosis, implying that targeting ILC2s might be a novel therapeutic strategy for its treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.