fMRI studies increasingly examine functions and properties of non-primary areas of human auditory cortex. However there is currently no standardized localization procedure to reliably identify specific areas across individuals such as the standard ‘localizers’ available in the visual domain. Here we present an fMRI ‘voice localizer’ scan allowing rapid and reliable localization of the voice-sensitive ‘temporal voice areas’ (TVA) of human auditory cortex. We describe results obtained using this standardized localizer scan in a large cohort of normal adult subjects. Most participants (94%) showed bilateral patches of significantly greater response to vocal than non-vocal sounds along the superior temporal sulcus/gyrus (STS/STG). Individual activation patterns, although reproducible, showed high inter-individual variability in precise anatomical location. Cluster analysis of individual peaks from the large cohort highlighted three bilateral clusters of voice-sensitivity, or “voice patches” along posterior (TVAp), mid (TVAm) and anterior (TVAa) STS/STG, respectively. A series of extra-temporal areas including bilateral inferior prefrontal cortex and amygdalae showed small, but reliable voice-sensitivity as part of a large-scale cerebral voice network. Stimuli for the voice localizer scan and probabilistic maps in MNI space are available for download.
Voices carry large amounts of socially relevant information on persons, much like 'auditory faces'. Following Bruce and Young (1986)'s seminal model of face perception, we propose that the cerebral processing of vocal information is organized in interacting but functionally dissociable pathways for processing the three main types of vocal information: speech, identity, and affect. The predictions of the 'auditory face' model of voice perception are reviewed in the light of recent clinical, psychological, and neuroimaging evidence.
BackgroundIn recent years, analyses of event related potentials/fields have moved from the selection of a few components and peaks to a mass-univariate approach in which the whole data space is analyzed. Such extensive testing increases the number of false positives and correction for multiple comparisons is needed.MethodHere we review all cluster-based correction for multiple comparison methods (cluster-height, cluster-size, cluster-mass, and threshold free cluster enhancement – TFCE), in conjunction with two computational approaches (permutation and bootstrap).ResultsData driven Monte-Carlo simulations comparing two conditions within subjects (two sample Student's t-test) showed that, on average, all cluster-based methods using permutation or bootstrap alike control well the family-wise error rate (FWER), with a few caveats.Conclusions(i) A minimum of 800 iterations are necessary to obtain stable results; (ii) below 50 trials, bootstrap methods are too conservative; (iii) for low critical family-wise error rates (e.g. p = 1%), permutations can be too liberal; (iv) TFCE controls best the type 1 error rate with an attenuated extent parameter (i.e. power < 1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.