Understanding how diffusion takes place within nanocrystals is of great importance for their stability and for controlling their synthesis. In this study, we used the strain sensitivity of Bragg coherent diffraction imaging (BCDI) to study the diffusion of iron into individual gold nanocrystals in situ at elevated temperatures. The BCDI experiments were performed at the I-07 beamline at Diamond Light Source, UK. The diffraction pattern of individual gold nanocrystals was measured around the (11-1) Bragg peak of gold before and after iron deposition as a function of temperature and time. Phase retrieval algorithms were used to obtain real space reconstructions of the nanocrystals from their measured diffraction patterns. Alloying of iron with gold at sample temperatures of 300°C-500°C and dealloying of iron from gold at 600°C were observed. The volume of the alloyed region in the nanocrystals was found to increase with the dose of iron. However, no significant time dependence was observed for the structure following each iron deposition, suggesting that the samples reached equilibrium relatively quickly. The resulting phase distribution within the gold nanocrystals after the iron depositions suggests a contraction due to diffusion of iron. Our results show that BCDI is a useful technique for studying diffusion in three dimensions and alloying behaviour in individual crystalline grains.
High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100 nm size regimes - a size routinely achievable by chemical synthesis - despite the spatial resolution of the BCDI technique being 20-30 nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20 nm and AuPd nanocrystals in the size range 60-65 nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.