Post-hemorrhagic ventricular dilatation (PHVD) is characterized by a build-up of cerebral spinal fluid (CSF) in the ventricles, which increases intracranial pressure and compresses brain tissue. Clinical interventions (i.e., ventricular taps, VT) work to mitigate these complications through CSF drainage; however, the timing of these procedures remains imprecise. This study presents Neonatal NeuroMonitor (NNeMo), a portable optical device that combines broadband near-infrared spectroscopy (B-NIRS) and diffuse correlation spectroscopy (DCS) to provide simultaneous assessments of cerebral blood flow (CBF), tissue saturation (StO2), and the oxidation state of cytochrome c oxidase (oxCCO). In this study, NNeMo was used to monitor cerebral hemodynamics and metabolism in PHVD patients selected for a VT. Across multiple VTs in four patients, no significant changes were found in any of the three parameters: CBF increased by 14.6 ± 37.6% (p = 0.09), StO2 by 1.9 ± 4.9% (p = 0.2), and oxCCO by 0.4 ± 0.6 µM (p = 0.09). However, removing outliers resulted in significant, but small, increases in CBF (6.0 ± 7.7%) and oxCCO (0.1 ± 0.1 µM). The results of this study demonstrate NNeMo’s ability to provide safe, non-invasive measurements of cerebral perfusion and metabolism for neuromonitoring applications in the neonatal intensive care unit.
During cardiac surgery with cardiopulmonary bypass (CPB), adequate maintenance of cerebral blood flow (CBF) is vital in preventing postoperative neurological injury – i.e. stroke, delirium, cognitive impairment. Reductions in CBF large enough to impact cerebral energy metabolism can lead to tissue damage and subsequent brain injury. Current methods for neuromonitoring during surgery are limited. This study presents the clinical translation of a hybrid optical neuromonitor for continuous intraoperative monitoring of cerebral perfusion and metabolism in ten patients undergoing non-emergent cardiac surgery with non-pulsatile CPB. The optical system combines broadband near-infrared spectroscopy (B-NIRS) to measure changes in the oxidation state of cytochrome c oxidase (oxCCO) – a direct marker of cellular energy metabolism – and diffuse correlation spectroscopy (DCS) to provide an index of cerebral blood flow (CBFi). As the heart was arrested and the CPB-pump started, increases in CBFi (88.5 ± 125.7%) and significant decreases in oxCCO (−0.5 ± 0.2 µM) were observed; no changes were noted during transitions off CPB. Fifteen hypoperfusion events, defined as large and sustained reductions in CPB-pump flow rate, were identified across all patients and resulted in significant decreases in perfusion and metabolism when mean arterial pressure dropped to 30 mmHg or below. The maximum reduction in cerebral blood flow preceded the corresponding metabolic reduction by 18.2 ± 15.0 s. Optical neuromonitoring provides a safe and non-invasive approach for assessing intraoperative perfusion and metabolism and has potential in guiding patient management to prevent adverse clinical outcomes.
Near-infrared spectroscopy (NIRS) measurements of tissue oxygen saturation (StO2) are frequently used during vascular and cardiac surgeries as a non-invasive means of assessing brain health; however, signal contamination from extracerebral tissues remains a concern. As an alternative, hyperspectral (hs)NIRS can be used to measure changes in the oxidation state of cytochrome c oxidase (ΔoxCCO), which provides greater sensitivity to the brain given its higher mitochondrial concentration versus the scalp. The purpose of this study was to evaluate the depth sensitivity of the oxCCO signal to changes occurring in the brain and extracerebral tissue components. The oxCCO assessment was conducted using multi-distance hsNIRS (source-detector separations = 1 and 3 cm), and metabolic changes were compared to changes in StO2. Ten participants were monitored using an in-house system combining hsNIRS and diffuse correlation spectroscopy (DCS). Data were acquired during carotid compression (CC) to reduce blood flow and hypercapnia to increase flow. Reducing blood flow by CC resulted in a significant decrease in oxCCO measured at rSD = 3 cm but not at 1 cm. In contrast, significant changes in StO2 were found at both distances. Hypercapnia caused significant increases in StO2 and oxCCO at rSD = 3 cm, but not at 1 cm. Extracerebral contamination resulted in elevated StO2 but not oxCCO after hypercapnia, which was significantly reduced by applying regression analysis. This study demonstrated that oxCCO was less sensitive to extracerebral signals than StO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.