High-dose human exposure to manganese results in manganese accumulation in the basal ganglia and dopaminergic neuropathology. Occupational manganese neurotoxicity is most frequently linked with manganese oxide inhalation; however, exposure to other forms of manganese may lead to higher body burdens. The objective of this study was to determine tissue manganese concentrations in rhesus monkeys following subchronic (6 h/day, 5 days/week) manganese sulfate (MnSO(4)) inhalation. A group of monkeys were exposed to either air or MnSO(4) (0.06, 0.3, or 1.5 mg Mn/m(3)) for 65 exposure days before tissue analysis. Additional monkeys were exposed to MnSO(4) at 1.5 mg Mn/m(3) for 15 or 33 exposure days and evaluated immediately thereafter or for 65 exposure days followed by a 45- or 90-day delay before evaluation. Tissue manganese concentrations depended upon the aerosol concentration, exposure duration, and tissue. Monkeys exposed to MnSO(4) at > or = 0.06 mg Mn/m(3) for 65 exposure days or to MnSO(4) at 1.5 mg Mn/m(3) for > or = 15 exposure days developed increased manganese concentrations in the olfactory epithelium, olfactory bulb, olfactory cortex, globus pallidus, putamen, and cerebellum. The olfactory epithelium, olfactory bulb, globus pallidus, caudate, putamen, pituitary gland, and bile developed the greatest relative increase in manganese concentration following MnSO(4) exposure. Tissue manganese concentrations returned to levels observed in the air-exposed animals by 90 days after the end of the subchronic MnSO(4) exposure. These results provide an improved understanding of MnSO(4) exposure conditions that lead to increased concentrations of manganese within the nonhuman primate brain and other tissues.
Concerns exist as to whether individuals with relative manganese deficiency or excess may be at increased risk for manganese toxicity following inhalation exposure. The objective of this study was to determine whether manganese body burden influences the pharmacokinetics of inhaled manganese sulfate (MnSO(4)). Postnatal day (PND) 10 rats were placed on either a low (2 ppm), sufficient (10 ppm), or high (100 ppm) manganese diet. The feeding of the 2 ppm manganese diet was associated with a number of effects, including reduced body weight gain, decreased liver manganese concentrations, and reduced whole-body manganese clearance rates. Beginning on PND 77 +/- 2, male littermates were exposed 6 h/day for 14 consecutive days to 0, 0.092, or 0.92 mg MnSO(4)/m(3). End-of-exposure tissue manganese concentrations and whole-body (54)Mn elimination rates were determined. Male rats exposed to 0.092 mg MnSO(4)/m(3) had elevated lung manganese concentrations when compared to air-exposed male rats. Male rats exposed to 0.92 mg MnSO(4)/m(3) developed increased striatal, lung, and bile manganese concentrations when compared to air-exposed male rats. There were no significant interactions between the concentration of inhaled MnSO(4) and dietary manganese level on tissue manganese concentrations. Rats exposed to 0.92 mg MnSO(4)/m(3) also had increased (54)Mn clearance rates and shorter initial phase elimination half-lives when compared with air-exposed control rats. These results suggest that, marginally manganese-deficient animals exposed to high levels of inhaled manganese compensate by increasing biliary manganese excretion. Therefore, they do not appear to be at increased risk for elevated brain manganese concentrations.
Hydrogen sulfide (H2S) is a potent inhibitor of cytochrome oxidase (CO) and is associated with dysosmia and anosmia in humans and nasal lesions in exposed rodents. An improved understanding of the pathogenesis of these lesions is needed to determine their toxicological relevance. We exposed 10-week-old male CD rats to 0, 30, 80, 200, or 400 ppm H2S for 3 hours/day for 1 or 5 days consecutively. The nose was histologically examined 24 hours after H2S exposure, and lesion recovery was assessed at 2 and 6 weeks following the 5-day exposure. A single 3-hour exposure to > or = 80 ppm H2S resulted in regeneration of the respiratory mucosa and full thickness necrosis of the olfactory mucosa localized to the ventral and dorsal meatus, respectively. Repeated exposure to the same concentrations caused necrosis of the olfactory mucosa with early mucosal regeneration that extended from the dorsal medial meatus to the caudal regions of the ethmoid recess. Acute exposure to 400 ppm H2S induced severe mitochondrial swelling in sustentacular cells and olfactory neurons, which progressed to olfactory epithelial necrosis and sloughing. CO immunoreactive cells were more frequently observed in regions of the olfactory mucosa commonly affected by H2S than in regions that were not. These findings demonstrate that acute exposure to >80 ppm H2S resulted in reversible lesions in the respiratory and olfactory mucosae of the CD rat and that CO immunoreactivity may be a susceptibility factor for H2S-induced olfactory toxicity in the rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.