Thermoelectricity offers a sustainable path to recover and convert waste heat into readily available electric energy, and has been studied for more than two centuries. From the controversy between Galvani and Volta on the Animal Electricity, dating back to the end of the XVIII century and anticipating Seebeck's observations, the understanding of the physical mechanisms evolved along with the development of the technology. In the XIX century Ørsted clarified some of the earliest observations of the thermoelectric phenomenon and proposed the first thermoelectric pile, while it was only after the studies on thermodynamics by Thomson, and Rayleigh's suggestion to exploit the Seebeck effect for power generation, that a diverse set of thermoelectric generators was developed.From such pioneering endeavors, technology evolved from massive, and sometimes unreliable, thermopiles to very reliable devices for sophisticated niche applications in the XX century, when Radioisotope Thermoelectric Generators for space missions and nuclear batteries for cardiac pacemakers were introduced. While some of the materials adopted to realize the first thermoelectric generators are still investigated nowadays, novel concepts and improved understanding of materials growth, processing, and characterization developed during the last 30 years has provided new avenues for the enhancement of the thermoelectric conversion efficiency, for example through nanostructuration, and favored the development of new classes of thermoelectric materials. With
While photovoltaic blends based on non-fullerene acceptors are touted for their thermal stability, this type of acceptor tends to crystallize, which can result in a gradual decrease in photovoltaic performance and affects the reproducibility of the devices. Two halogenated indacenodithienothiophene-based acceptors that readily co-crystallize upon mixing are studied, which indicates that the use of an acceptor mixture alone does not guarantee the formation of a disordered mixture. The addition of the donor polymer to the acceptor mixture readily suppresses the crystallization, which results in a fine-grained ternary blend with nanometer-sized domains that do not coarsen due to a high T g ≈ 200 °C. As a result, annealing at temperatures of up to 170 °C does not markedly affect the photovoltaic performance of ternary devices, in contrast to binary devices that suffer from acceptor crystallization in the active layer. The results indicate that the ternary approach enables the use of high-temperature processing protocols, which are needed for upscaling and high-throughput fabrication of organic solar cells. Further, ternary devices display a stable photovoltaic performance at 130 °C for at least 205 h, which indicates that the use of acceptor mixtures allows to fabricate devices with excellent thermal stability.
Organic solar cells incorporating non-fullerene acceptors (NFAs) have reached remarkable power conversion efficiencies of over 18%. Unlike fullerene derivatives, NFAs tend to crystallize from solutions, resulting in bulk heterojunctions that include a crystalline acceptor phase. This must be considered in any morphology-function models. Here, it is confirmed that high-performing solution-processed indacenodithienothiophene-based NFAs, i.e., ITIC and its derivatives ITIC-M, ITIC-2F, and ITIC-Th, exhibit at least two crystalline forms. In addition to highly ordered polymorphs that form at high temperatures, NFAs arrange into a low-temperature metastable phase that is readily promoted via solution processing and leads to the highest device efficiencies. Intriguingly, the low-temperature forms seem to feature a continuous network that favors charge transport despite of a poorly order along the π-π stacking direction. As the optical absorption of the structurally more disordered low-temperature phase can surpass that of the more ordered polymorphs while displaying comparable-or even higher-charge transport properties, it is argued that such a packing structure is an important feature for reaching highest device efficiencies, thus, providing guidelines for future materials design and crystal engineering activities.
The performance of photovoltaic devices based on blends of conjugated polymers with non-fullerene acceptors depends upon the phase behaviour and microstructure of the binary, which in turn depends on the chemical structures of the molecular components and the blend composition. We investigate the correlation between molecular structure, composition, phase behaviour and device performance of a model system comprising semi-crystalline poly-3-hexylthiophene (P3HT) as the donor polymer and three non-fullerene acceptors, two of which (O-IDTBR/EH-IDTBR) have a planar core with different side-chains, and one (O-IDFBR) has a twisted core. We combine differential scanning calorimetry with optical measurements including UV-Vis, photoluminescence, spectroscopic ellipsometry and Raman, and photovoltaic device performance measurements, all at varying blend composition. For P3HT:IDTBR blends, the crystallinity of polymer and acceptor are preserved over a wide composition range and the blend displays a eutectic phase behaviour, with the optimum solar cell composition lying close to the eutectic. For P3HT:IDFBR blends, increasing acceptor content disrupts the polymer crystallinity, and the optimum device composition appears to be limited by polymer connectivity rather than being linked to the eutectic. The optical probes allow us to probe both the crystalline and amorphous phases, clearly revealing the compositions at which component mixing disrupts crystallinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.