Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100–1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-β, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb.
Objectives Investigate the feasibility of saliva sampling as a noninvasive and safer tool to detect SARS-CoV-2 and to compare its reproducibility and sensitivity with nasopharyngeal swab samples (NPS). The use of sample pools was also investigated. Methods 2107 paired samples were collected from asymptomatic health care and office workers in Mexico City. Sixty of these samples were also analyzed in two other independent laboratories for concordance analysis. Sample processing and analysis of virus genetic material were performed according to standard protocols described elsewhere. Pooling analysis was performed by analyzing the saliva pool and the individual pool components. Results The concordance between NPS and saliva results was 95.2% (Kappa: 0.727, p = 0.0001) and 97.9% without considering inconclusive results (Kappa: 0.852, p = 0.0001). Saliva had a lower number of inconclusive results than NPS (0.9% vs 1.9%). Furthermore, saliva shows a significantly higher concentration of both total RNA and viral copies than NPS. Comparison of our results with those of the other two laboratories shows 100% and 97% concordance. Saliva samples are stable without the use of any preservative, a positive SARS-CoV-2 sample can be detected 5, 10, and 15 days after collection when the sample is stored at 4 °C. Conclusions Our results indicate that saliva is as effective as NPS for the identification of SARS-CoV-2-infected asymptomatic patients, sample pooling facilitates the analysis of a larger number of samples with the benefit of cost reduction.
BackgroundTuberculosis is the leading cause of death by an infectious microorganism worldwide. Conventional treatment lasts at least six months and has adverse effects; therefore, it is important to find therapeutic alternatives that reduce the bacterial load and may reduce the treatment duration. The immune response against tuberculosis can be modulated by several mechanisms, including extracellular vesicles (EVs), which are nano-sized membrane-bound structures that constitute an efficient communication mechanism among immune cells.MethodsThe EVs released by the J774A.1 mouse macrophage cell line, both spontaneously (S-EV) and after infection with Mycobacterium tuberculosis H37Rv (Mtb-EV), were purified by ultra-centrifugation and size-exclusion chromatography. The size distribution and chemical composition of these EVs were evaluated, and their effect on the bacterial load and the production of cytokines was determined in both in vitro and in vivo models of M. tuberculosis infection.ResultsMtb-EV are larger than S-EV, they contain M. tuberculosis-specific antigens (not detected in EVs released from M. fortuitum-infected J774A.1 cells) and are rich in phosphatidylserine, present in their outer membrane layer. S-EV, but not Mtb-EV, reduced the bacterial load and the production of MCP-1 and TNF-α in M. tuberculosis-infected macrophages, and these effects were reversed when phosphatidylserine was blocked with annexin V. Both S-EV and Mtb-EV significantly reduced the lung bacterial load in mice infected with M. tuberculosis after 60 days of treatment, but they had no effect on survival or on the lung pneumonic area of these mice.ConclusionJ774A.1 macrophages infected with M. tuberculosis H37Rv released EVs that differed in size and phosphatidylserine content from spontaneously released EVs, and these EVs also had different biological effects: S-EV reduced the mycobacterial load and the cytokine production in vitro (through a phosphatidylserine-dependent mechanism), while both EVs reduced the lung bacterial load in vivo. These results are the basis for further experiments to evaluate whether EVs improve the efficiency of the conventional treatment for tuberculosis.
Tuberculosis remains one of the leading public health problems in the world. The mechanisms that lead to the activation of the immune response against Mycobacterium tuberculosis (Mtb) have been extensively studied, with a focus on the role of cytokines as the main signals for immune cell communication. However, less is known about the role of other signals, such as extracellular vesicles (EVs), in the communication between immune cells, particularly during the activation of the adaptive immune response. In this study, we determined that EVs released by human neutrophils infected with Mtb (EV-Mtb) contained several host proteins that are ectosome markers. In addition, we demonstrated that EV-Mtb released after only 30 min of infection carried mycobacterial antigens and pathogen-associated molecular patterns, and we identified 15 mycobacterial proteins that were consistently found in high concentrations in EV-Mtb; these proteins contain epitopes for CD4 T cell activation. We found that EV-Mtb increased the expression of the co-stimulatory molecule CD80 and of the co-inhibitory molecule PD-L1 on immature monocyte-derived dendritic cells. We also found that immature and mature dendritic cells treated with EV-Mtb were able to induce IFN-γ production by autologous Mtb antigen-specific CD4 T cells, indicating that these EVs acted as antigen carriers and transferred mycobacterial proteins to the antigen-presenting cells. Our results provide evidence that EV-Mtb participate in the activation of the adaptive immune response against Mtb.
We have previously shown that human neutrophils (NEU) stimulated with live Mycobacterium tuberculosis H37Rv (Mtb) release exovesicles, named EXO-Mtb. When autologous macrophages were incubated with EXO-Mtb, they increased the expression of CD86 and MHC II and produced inflammatory cytokines. Here we demonstrate that EXO-Mtb can also reduce the intracellular load of Mtb in autologous macrophages. Since autophagy has been shown to control mycobacterial growth, LC3II expression was measured on infected macrophages after incubation with EXO-Mtb (4, 6 and 24h). Control EXO preparations included those released spontaneously from NEU, or after stimulation with PMA or fMLP. Our results showed that of all EXO preparations used, EXO-Mtb induced the largest amounts of LC3II protein, which correlates with a significant reduction of colony forming units (CFU). This phenomenon could be reverted with the addition of Wortmannin, an autophagy inhibitor. It is important to remark that there was not a 100% control of intracellular mycobacterial growth. Further experiments should be done to better understand the role of ectosomes in NEU-macrophage communication through exovesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.