Successful modeling and prediction depend on effective methods for the extraction of domain-relevant variables. This paper proposes a methodology for identifying domain-specific terms. The proposed methodology relies on a collection of documents labeled as relevant or irrelevant to the domain under analysis. Based on the labeled document collection, we propose a supervised technique that weights terms based on their descriptive and discriminating power. Finally, the descriptive and discriminating values are combined into a general measure that, through the use of an adjustable parameter, allows to independently favor different aspects of retrieval such as maximizing precision or recall, or achieving a balance between both of them. The proposed technique is applied to the economic domain and is empirically evaluated through a human-subject experiment involving experts and non-experts in Economy. It is also evaluated as a term-weighting technique for query-term selection showing promising results. We finally illustrate the applicability of the proposed technique to address diverse problems such as building prediction models, supporting knowledge modeling, and achieving total recall.
Causal graph extraction from news has the potential to aid in the understanding of complex scenarios. In particular, it can help explain and predict events, as well as conjecture about possible cause-effect connections. However, limited work has addressed the problem of large-scale extraction of causal graphs from news articles. This article presents a novel framework for extracting causal graphs from digital text media. The framework relies on topic-relevant variables representing terms and ongoing events that are selected from a domain under analysis by applying specially developed information retrieval and natural language processing methods. Events are represented as event-phrase embeddings, which make it possible to group similar events into semantically cohesive clusters. A time series of the selected variables is given as input to a causal structure learning techniques to learn a causal graph associated with the topic that is being examined. The complete framework is applied to the New York Times dataset, which covers news for a period of 246 months (roughly 20 years), and is illustrated through a case study. An initial evaluation based on synthetic data is carried out to gain insight into the most effective time-series causality learning techniques. This evaluation comprises a systematic analysis of nine state-of-the-art causal structure learning techniques and two novel ensemble methods derived from the most effective techniques. Subsequently, the complete framework based on the most promising causal structure learning technique is evaluated with domain experts in a real-world scenario through the use of the presented case study. The proposed analysis offers valuable insights into the problems of identifying topic-relevant variables from large volumes of news and learning causal graphs from time series.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.