Over the last millennia, the land between the Alps and the Mediterranean Sea, characterized by extraordinary habitat diversity, has seen an outstanding cross-cultural development. For the first time, this paper reports on the census of the Holocene archaeological sites that have been studied as part of archaeobotany in Italy (continental Italy, the Italian peninsula and islands) over the last quarter in a century. Pollen, non-pollen palynomorphs, seeds and fruits, woods/charcoals and other plant remains have all been analysed in multidisciplinary researches. A list of 630 sites has been provided by more than 15 archaeobotanical teams. The sites are located across the 20 regions of Italy, and in the Republic of San Marino (356 sites in northern Italy, 118 in central Italy, 156 in southern Italy and on the islands). They belong to several cultural phases: 321 sites are only pre-Roman, 264 are Roman/post-Roman, and 45 sites cover a broader range of time, present in both time spans. Site distribution is plotted in maps of site density according to geographical districts and the main chronological phases. The reference list helps to find analytical data referring to the descriptive papers that may be scattered throughout monographs and specific books on the matter
The discovery of the Nuragic culture settlement\ud
of Sa Osa, Cabras-Oristano, Sardinia, has made it possible\ud
to investigate the domestication status of waterlogged uncharred\ud
grape pips that were recovered from three wells\ud
dating from the Middle and Late Bronze Age (ca.\ud
1350–1150 BC). Applying the stepwise linear discriminant\ud
analysis method, a morphological comparison of archaeological\ud
seeds and modern wild and cultivated Sardinian\ud
grapes pips was performed to determine the similarities\ud
between them. The results showed that the archaeological\ud
seeds from the Middle Bronze Age have intermediate\ud
morphological traits between modern wild and cultivated\ud
grape pips from Sardinia. In contrast, the analyses performed\ud
on the archaeological seeds from the Late Bronze\ud
Age showed a high degree of similarity with the modern\ud
cultivars in Sardinia. These results provide the first evidence\ud
of primitive cultivated Vitis vinifera in Sardinia\ud
during the Late Bronze Age (1286–1115 cal BC, 2r). This\ud
evidence may support the hypothesis that Sardinia could\ud
have been a secondary domestication centre of the grapevine,\ud
due to the presence of ancient cultivars that still\ud
exhibit the phenotypic characteristics of wild grapes
The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants.
Morphometric methods based on artificial vision algorithms provide measurements for magnitudes descriptive of seed images (i.e., the length, width, area, and surface circularity index). Nevertheless, their results frequently omit the resemblance of the images to geometric figures that may be used as models. A complementary method based on the comparison of seed images with geometric models is applied to seeds of Vitis spp. The J index gives the percentage of similarity between a seed image and the model. Seven new geometric models are described based on the heart-shaped and piriform curves. Seeds of different species, subspecies and cultivars of Vitis adjust to different models. Models 1 and 3, the heart curve and the water drop, adjust better to seeds of V. amurensis, V. labrusca and V. rupestris than to V. vinifera. Model 6, the Fibonacci’s pear, adjusts well to seeds of V. vinifera, in general, and better to V. vinifera ssp. vinifera than to V. vinifera ssp. sylvestris. Seed morphology in species of Cissus and Parthenocissus, two relatives of Vitis in the Vitaceae, is also analysed. Geometric models are a tool for the description and identification of species and lower taxonomic levels complementing the results of morphometric analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.