With three coherent SAR images it is possible to form three interferograms. In some cases the phases of the three averaged interferograms will be significantly inconsistent and indicate a sort of phase excess or deficit (which we call lack of triangularity or inconsistency). In this paper we illustrate theoretically which models can explain such phenomenon and provide some real-data examples. It is also shown that two or more independent scattering mechanisms are necessary to explain phase inconsistencies. The observation of lack of consistency might be useful to derive information on the target and also as a warning that the scatterer presents a temporal covariance matrix which is not intrinsically real, with consequences for the processing of interferometric stacks.
This paper introduces the concept of a fractionated MirrorSAR which is based on a set of mutually separated transmitter and receiver satellites. As opposed to previously published bi-and multistatic SAR systems, the receiver satellites are considerably simplified, as their main functionality is reduced to a kind of microwave mirror (or space transponder) which routes the radar echoes towards the transmitter. The forwarded radar signals are then coherently demodulated within the transmitter by using the same oscillator that had been used for radar pulse generation. This avoids the necessity of a bidirectional phase synchronization link as currently employed in TanDEM-X. Since the needs for fully equipped radar receivers, on-board memory and downlink are also overcome, the weight and costs of the receiver satellites can be significantly reduced. This allows for a scaling of their number without cost explosion, thereby paving the way for novel applications like multibaseline SAR interferometry and single-pass tomography. Several additional opportunities make the MirrorSAR concept even more attractive. First, the separation of the transmitter and receiver front-ends reduces not only RF losses by avoiding switches and circulators, but it may also lower the peak power in the transmitter satellite by employing a frequency-modulated continuous wave (FMCW) illumination. This simplifies the design of the high-power amplifier and increases its efficiency. Second, the opportunity for continuous radar data collection enables new modes for the imaging of ultra-wide swaths with very high resolution, thereby overcoming an inherent limitation of conventional monostatic SAR systems. Third, the joint availability of all receiver signals in a centralized node offers new opportunities for efficient data compression, as the multistatic radar signals from close satellite formations are characterized by a high degree of mutual redundancy. Fourth, the use of a sufficiently separated transmitter satellite can avoid the risk for mutual illumination, which challenges the design and operation of fully-active multistatic SAR systems. Further advantages arise from the scalability and reconfigurability, which support new redundancy concepts and pave at the same time the way to new modes like MIMO-SAR tomography.
This paper addresses the performance in the retrieval of 3-D mean deformation maps by exploiting simultaneous or quasi-simultaneous squinted synthetic aperture radar (SAR) interferometric acquisitions in a repeat-pass scenario. In multisatellite or multi-beam low Earth observation (LEO) missions the availability of two (or more) lines of sight allows the simultaneous acquisition of SAR images with different squint angles, hence improving the sensitivity to the north-south component of the deformation. Due to the simultaneity of the acquisitions, the troposphere will be highly correlated and, therefore, will tend to cancel out when performing the differential measurement between the interferograms obtained with the different lines of sight, hence resulting in a practically troposphere-free estimation of the along-track deformation measurement. In practice, though, the atmospheric noise in the differential measurement will increase for increasing angular separations. The present contribution expounds the mathematical framework to derive the performance by properly considering the correlation of the atmospheric delays between the simultaneous acquisitions. To that aim, the hybrid Cramér-Rao bound is exploited making use of the autocorrelation function of the troposphere. Some performance examples are presented in the frame of future spaceborne SAR missions at C-and L-band. Index Terms-Synthetic aperture radar (SAR), differential SAR interferometry (DInSAR), hybrid Cramér-Rao bound, squinted SAR acquisitions, troposphere, atmospheric boundary layer.
This paper addresses the problem of estimating the azimuth antenna pattern by using a set of persistent point scatterers (PPS) retrieved from a stack of interferometric synthetic aperture radar images. This is achieved by means of a maximum likelihood estimation. PPS emerge as a restricted subset of the well known persistent scatterers, for which many applications have been described in the literature. PPS have a more stringent property since they explicitly require an impulsive trend feature; a good degree of isolation from the neighboring targets is further necessary to estimate the antenna pattern by means of digital spotlight focusing. A statistical model for PPS is provided and experimentally validated; the sufficient number of PPSs necessary to get a given accuracy for the azimuth antenna estimation is also suggested. Results using both simulated and real X-band Cosmo Skymed data are eventually illustrated
Tandem-L is a highly innovative SAR satellite mission for the global observation of dynamic processes on the Earth's surface with hitherto unknown quality and resolution. Thanks to its novel imaging techniques and its unprecedented acquisition capacity, Tandem-L will deliver urgently needed information for the solution of pressing scientific questions in the areas of the biosphere, geosphere, cryosphere and hydrosphere. The feasibility of Tandem-L has been analyzed and confirmed in the scope of a phase A study, which has been conducted in close cooperation between the German Aerospace Center (DLR) and the German space industry. This paper provides an overview of the Tandem-L mission concept and summarizes the actual development status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.