To evaluate the water compartment antibiotic-resistance contamination rates, 11 wells, five streams, and four treatment plants located in the Oltrepò Pavese area were screened for the presence of third generation cephalosporins resistant Gram-negative bacteria. Enterobacteriaceae were also characterized for the Extended-Spectrum-β-Lactamases (ESBLs), carbapenemases, and mcr-1 genes presence. From December 2014 to November 2015, 246 water samples were filtered, plated on Plate Count Agar, MacConkey Agar, and MacConkey Agar with cefotaxime. Isolates were species identified using AutoSCAN-4-System and ESBLs, carbapenemases, and colistin resistance determinants were characterized by PCR, sequencing, and microarray. Plasmid conjugative transfer experiments, PCR-based Replicon typing, Pulsed-Field Gel Electrophoresis, Multi-Locus-Sequence-Typing, and in-silico plasmid characterization were performed. A total of 132 enterobacteria isolates grew on MacConkey agar with cefotaxime: 82 (62.1%) were obtained from streams, 41 (31.1%) from treatment plants, and 9 (6.8%) from wells. Thirty out of 132 (22.7%) isolates, mainly belonging to Escherichia coli (n = 15) species, showed a synergic effect with piperacillin-tazobactam. A single ESBL gene of blaCTX−M-type was identified in 19/30 isolates. In further two E. coli strains, a blaCTX−M−1 gene co-existed with a blaSHV-type ESBL determinant. A blaSHV−12 gene was detected in two isolates of E. coli (n = 1) and Klebsiella oxytoca (n = 1), while any ESBL determinant was ascertained in seven Yersinia enterocolitica strains. A blaDHA-type gene was detected in a cefoxitin resistant Y. enterocolitica from a stream. Interestingly, two Klebsiella pneumoniae strains of ST307 and ST258, collected from a well and a wastewater treatment plant, resulted KPC-2, and KPC-3 producers, respectively. Moreover, we report the first detection of mcr-1.2 ST10 E. coli on a conjugative IncX4 plasmid (33.303 bp in size) from a stream of Oltrepò Pavese (Northern Italy). Both ESBLs E. coli and ESBLs/carbapenemase-producing K. pneumoniae strains showed clonal heterogeneity by Pulsed-Field Gel Electrophoresis and Multi-Locus-Sequence-Typing. During one-year study and taking in account the whole Gram-negative bacterial population, an average percentage of cefotaxime resistance of 69, 32, and 10.3% has been obtained for the wastewater treatment plants, streams, and wells, respectively. These results, of concern for public health, highlight the need to improve hygienic measures to reduce the load of discharged bacteria with emerging resistance mechanisms.
BackgroundRationale and aims of the study were to compare colonization frequencies with MDR bacteria isolated from LTCF residents in three different Northern Italian regions, to investigate risk factors for colonization and the genotypic characteristics of isolates. The screening included Enterobacteriaceae expressing extended-spectrum β-lactamases (ESβLs) and high-level AmpC cephalosporinases, carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa or Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE).MethodsUrine samples and rectal, inguinal, oropharyngeal and nasal swabs were plated on selective agar; resistance genes were sought by PCR and sequencing. Demographic and clinical data were collected.ResultsAmong the LTCF residents, 75.0% (78/104), 69.4% (84/121) and 66.1% (76/115) were colonized with at least one of the target organisms in LTCFs located in Milan, Piacenza and Bolzano, respectively. ESβL producers (60.5, 66.1 and 53.0%) were highly predominant, mainly belonging to Escherichia coli expressing CTX-M group-1 enzymes. Carbapenemase-producing enterobacteria were found in 7.6, 0.0 and 1.6% of residents; carbapemenase-producing P. aeruginosa and A. baumannii were also detected. Colonization by MRSA (24.0, 5.7 and 14.8%) and VRE (20.2, 0.8 and 0.8%) was highly variable. Several risk factors for colonization by ESβL-producing Enterobacteriaceae and MRSA were found and compared among LTCFs in the three Provinces. Colonization differences among the enrolled LTCFs can be partially explained by variation in risk factors, resident populations and staff/resident ratios, applied hygiene measures and especially the local antibiotic resistance epidemiology.ConclusionsThe widespread diffusion of MDR bacteria in LTCFs within three Italian Provinces confirms that LTCFs are an important reservoir of MDR organisms in Italy and suggests that future efforts should focus on MDR screening, improved implementation of infection control strategies and antibiotic stewardship programs targeting the complex aspects of LTCFs.Electronic supplementary materialThe online version of this article (10.1186/s13756-018-0326-0) contains supplementary material, which is available to authorized users.
Extended-spectrum beta-lactamases (ESBLs), AmpC-type beta-lactamases (ACBLs) and carbapenemases are among the most important resistance mechanisms in Enterobacteriaceae. This study investigated the presence of these resistance mechanisms in consecutive non-replicate isolates of Escherichia coli (n = 2,352), Klebsiella pneumoniae (n = 697), and Proteus mirabilis (n = 275) from an Italian nationwide cross-sectional survey carried out in October 2013. Overall, 15.3% of isolates were non-susceptible to extended-spectrum cephalosporins but susceptible to carbapenems (ESCR-carbaS), while 4.3% were also non-susceptible to carbapenems (ESCR-carbaR). ESCR-carbaS isolates were contributed by all three species, with higher proportions among isolates from inpatients (20.3%) but remarkable proportions also among those from outpatients (11.1%). Most ESCR-carbaS isolates were ESBL-positive (90.5%), and most of them were contributed by E. coli carrying blaCTX-M group 1 genes. Acquired ACBLs were less common and mostly detected in P. mirabilis. ESCR-carbaR isolates were mostly contributed by K. pneumoniae (25.1% and 7.7% among K. pneumoniae isolates from inpatients and outpatients, respectively), with blaKPC as the most common carbapenemase gene. Results showed an increasing trend for both ESBL and carbapenemase producers in comparison with previous Italian surveys, also among outpatients.
Objectives: Genomic characterization of the internationally spread sequence type (ST) 16 carbapenemresistant Klebsiella pneumoniae. Methods: The complete genomes of three carbapenem producing ST16 K. pneumoniae from Italian patients were analysed by single-nucleotide polymorphism-based phylogeny, core genome multilocus sequence typing, resistance, plasmid, and virulence content and compared with ten genomes of ST16 strains isolated in other countries. Plasmids carrying bla NDM-1 or bla OXA-232 carbapenemase genes were assembled and sequences were analysed. Results: The internationally spread ST16 K. pneumoniae clone showed variability in terms of distribution of NDM-1 and OXA-232 type carbapenemases. In some ST16 strains, up to six plasmids can be simultaneously present in the same cell, including ColE-like plasmids carrying bla OXA-232 and IncF plasmids carrying bla NDM-1. The differences observed in plasmid, resistance, and virulence content and core genome suggested that there is not a unique, highly conserved ST16 clone, but instead different variants of this lineage circulate worldwide. Conclusions: The ST16 K. pneumoniae clone has spread worldwide and may become a high-risk clone.
Aim of the study was to characterize KPC-producing Escherichia coli (KPC-Ec) clinical isolates among a Northern Italy Long-Term Care and Rehabilitation Facility (LTCRF) residents. Thirteen consecutive non repeated MDR E. coli isolates showing ertapenem Minimum Inhibitory Concentrations (MICs) >0.5 mg/L, collected during the period March 2011 - May 2013 from ASP "Redaelli" inpatients, were investigated. The bla KPC/CTX-M/SHV/TEM/OXA genes were identified by PCR and sequencing. KPC-Ec isolates underwent phylotyping, Pulsed-Field Gel Electrophoresis (PFGE), multilocus sequence typing (MLST) and repetitive sequence-based PCR (rep-PCR) profiling. Incompatibility groups analysis and conjugation were also performed. Eleven out of 13 isolates, resulted bla KPC-type positive, were consistently resistant to third generation cephalosporins, fluoroquinolones and trimethoprim-sulphametoxazole (84.6 %), retaining susceptibility to colistin (EUCAST guidelines). At least n = 4/11 of KPC-Ec patients received ≥48 h of meropenem therapy. Sequencing identified 9 bla KPC-2, 1 bla KPC-3 and 1 bla KPC-8 determinants. KPC-Ec plasmids belonged to IncF group (FIIk replicon); conjugation confirmed bla KPC/TEM-1/OXA-9 genes transferability for 10 KPC-Ec. Although three pulsotypes (A, B, C) were identified, all KPC-Ec belonged to phylogenetic group B2. Clone B (B-B5) caused an outbreak of infection involving nine inpatients at five wards. Rep-PCR showed relatedness for seven representative KPC-Ec isolates. Here we report a LTCRF outbreak caused by a ST131-B2 E. coli associated with bla KPC-2 and bla KPC-8 genes, and the emergence of the new ST3948. Elderly people with co-morbidities are at risk for ST131 colonization. KPC-Ec clones local monitoring appears essential both to avoid their spreading among healthcare settings, and to improve therapeutic choices for LTCRF residents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.