Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication.
AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence.
SummaryHuman AKTIP and mouse Ft1 are orthologous ubiquitin E2 variant proteins involved in telomere maintenance and DNA replication. AKTIP also interacts with A‐ and B‐type lamins. These features suggest that Ft1 may be implicated in aging regulatory pathways. Here, we show that cells derived from hypomorph Ft1 mutant (Ft1 kof/kof) mice exhibit telomeric defects and that Ft1 kof/kof animals develop progeroid traits, including impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. We also demonstrate a genetic interaction between Ft1 and p53. The analysis of mice carrying mutations in both Ft1 and p53 (Ft1 kof/kof ; p53 ko/ko and Ft1 kof/kof ; p53 +/ko) showed that reduction in p53 rescues the progeroid traits of Ft1 mutants, suggesting that they are at least in part caused by a p53‐dependent DNA damage response. Conversely, Ft1 reduction alters lymphomagenesis in p53 mutant mice. These results identify Ft1 as a new player in the aging process and open the way to the analysis of its interactions with other progeria genes using the mouse model.
(1) Background: It is recommended that an athlete, in order to ensure correct nutrition and performance, should consume between 1.2 and 2.0 g/kg/day of protein, while the daily recommended protein intake for a non-athlete is 0.8and 0.9 mg/kg/day. It is unclear if athletes living in Mediterranean countries are able to meet protein requirements without supplementation, since Mediterranean diet de-emphasizes meat and meat products. (2) Methods: 166 athletes (125 males) enrolled between 2017 and 2019 were required to keep a dietary journal for three consecutive days (2 workdays and 1 weekend day). Athletes had to be >18 years old, train in a particular sport activity more than 3 h a week and compete at least at an amateur level. Journal data were collected and then translated into macro-nutrient content (grams of protein, carbohydrates, and lipids) by a nutritionist. (3) Results: The protein intake reported by this specific population vary slightly from the Academy of Nutrition and Dietetics (AND), Dietitians of Canada (DC), and the American College of Sports Medicine (ACSM) joint statement recommendation level. Average protein levels without protein supplementation fell within the protein guidelines. Counterintuitively, the intake among those who supplemented their diet with protein was higher compared with those who did not, even when excluding the contribution of supplements. Although the majority of subjects participating in the study were able to meet protein intake recommended for athletes without protein supplementation, 27% of athletes were below the guideline range. (4) Conclusions: these data suggest that athletes’ nutrition should be more often evaluated by a nutritionist and that they will benefit from increasing their nutritional knowledge in order to make better food choices, resorting to protein supplementation only when effectively needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.