Keloid scars are described as benign fibro‐proliferative dermal outgrowths that commonly occur in pigmented skin post cutaneous injury, and continue to grow beyond the boundary of the original wound margin. There is a lack of thorough understanding of keloid pathogenesis and thus keloid therapeutic options remain ill‐defined. In view of the poor response to current therapy and high recurrence rates, there is an unmet need in improving our knowledge and therefore in identifying targeted and effective treatment strategies in management of keloids. Keloid research however, is hampered by a lack of relevant animal models as keloids do not spontaneously occur in animals and are unique to human skin. Therefore, developing novel animal models and nonanimal models for functional evaluation of keloid cells and tissue for better understanding their pathobiology and response to putative candidate therapies are essential. Here, we present the key concepts and relevant emerging research on two‐dimensional and three‐dimensional cell and tissue models for functional testing of keloid scars. We will describe in detail current models including in vitro mono‐ and co‐cultures, multi‐cellular spheroids (organoids) and organotyopic cultures, ex vivo whole skin keloid tissue organ culture models as well as in vivo human patient models. Finally, we discuss the role played by time as the fourth dimension in a novel model that involves sequential temporal biopsies of human patients with keloids (a so called 4D in vivo human model). The use of these unique models will no doubt prove pivotal in identification of new drug targets as well as biomarkers, in functional testing of emerging novel therapeutics, and in enhancing our understanding of keloid disease biology.
Keloids are benign fibro-proliferative raised dermal lesions that spread beyond the original borders of the wound, continue to grow, rarely regress, and are the most common in pigmented individuals after an abnormal wound healing response. The current treatment failure and respective challenges involved highlighting the underlying issue that the etiopathogenesis of keloids is still not well understood. Disease models are required to better understand the disease pathogenesis. It is not possible to establish keloids in animals because of the uniqueness of this disease to human skin. To address this challenge, along these lines, non-animal reproducible models are vital in investigating molecular mechanisms of keloid pathogenesis and therapeutics development. Recent Advances: Various non-animal models have been developed to better understand the molecular mechanisms involved in keloid scarring and aid in identifying and evaluating the therapeutic potential of novel drug candidates. In this scenario, the current review aims at describing in vitro monocultures, co-cultures, organotypic cultures, and ex vivo whole skin keloid tissue organ culture models. Critical Issues and Future Directions: Current treatment options for keloids are far from securing a cure or preventing disease recurrence. Identifying universally accepted effective therapy for keloids has been hampered by the absence of appropriate disease model systems. Animal models do not accurately mimic the disease, thus non-animal model systems are pivotal in keloid research. The use of these models is essential not only for a better understanding of disease biology but also for identifying and evaluating novel drug targets.
Raised dermal scars including hypertrophic, and keloid scars as well as scalp‐associated fibrosing Folliculitis Keloidalis Nuchae (FKN) are a group of fibrotic raised dermal lesions that mostly occur following cutaneous injury. They are characterized by increased extracellular matrix (ECM) deposition, primarily excessive collagen type 1 production by hyperproliferative fibroblasts. The extent of ECM deposition is thought to be proportional to the severity of local skin inflammation leading to excessive fibrosis of the dermis. Due to a lack of suitable study models, therapy for raised dermal scars remains ill‐defined. Immune cells and their associated markers have been strongly associated with dermal fibrosis. Therefore, modulation of the immune system and use of anti‐inflammatory cytokines are of potential interest in the management of dermal fibrosis. In this review, we will discuss the importance of immune factors in the pathogenesis of raised dermal scarring. The aim here is to provide an up‐to‐date comprehensive review of the literature, from PubMed, Scopus, and other relevant search engines in order to describe the known immunological factors associated with raised dermal scarring. The importance of immune cells including mast cells, macrophages, lymphocytes, and relevant molecules such as cytokines, chemokines, and growth factors, antibodies, transcription factors, and other immune‐associated molecules as well as tissue lymphoid aggregates identified within raised dermal scars will be presented. A growing body of evidence points to a shift from proinflammatory Th1 response to regulatory/anti‐inflammatory Th2 response being associated with the development of fibrogenesis in raised dermal scarring. In summary, a better understanding of immune cells and associated molecular markers in dermal fibrosis will likely enable future development of potential immune‐modulated therapeutic, diagnostic, and theranostic targets in raised dermal scarring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.