We have developed a novel optical approach to determine pulsatile ocular volume changes using automated segmentation of the choroid, which, together with Dynamic Contour Tonometry (DCT) measurements of intraocular pressure (IOP), allows estimation of the ocular rigidity (OR) coefficient. Spectral Domain Optical Coherence Tomography (OCT) videos were acquired with Enhanced Depth Imaging (EDI) at 7Hz during ~50 seconds at the fundus. A novel segmentation algorithm based on graph search with an edge-probability weighting scheme was developed to measure choroidal thickness (CT) at each frame. Global ocular volume fluctuations were derived from frame-to-frame CT variations using an approximate eye model. Immediately after imaging, IOP and ocular pulse amplitude (OPA) were measured using DCT. OR was calculated from these peak pressure and volume changes. Our automated segmentation algorithm provides the first non-invasive method for determining ocular volume change due to pulsatile choroidal filling, and the estimation of the OR constant. Future applications of this method offer an important avenue to understanding the biomechanical basis of ocular pathophysiology.
Perfect vortex beams (PVBs) have intensity distributions independent of their topological charges. We propose an alternative formulation to generate PVBs through Laguerre–Gauss beams (LGBs). Using the connection between Bessel and LGBs, we formulate a modified LGB that mimics the features of a PVB, the perfect LGB (PLGB). The PLGB is closer to the ideal PVB, maintaining a quasi-constant ring radius and width. Furthermore, its number of rings can be augmented with the order of the Laguerre polynomial, showing an outer ring independent of the topological charge. Since the PLGB comprises a paraxial solution, it is closely related to an experimental realization, e.g., using spatial light modulators [Phys. Rev. A 100, 053847 (2019)PLRAAN1050-294710.1103/PhysRevA.100.053847].
Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmology, providing essential information associated with various eye diseases. In order to investigate the dynamics of the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting membrane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological operations including a two-step contrast enhancement technique, proving to be very robust when dealing with low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is demonstrated, and deformation results are presented for healthy and glaucomatous eyes.
Smaller mean N-PP deformation was observed in the EOAG, OAG-S, and OHT groups compared to healthy eyes in this pilot study. The measured deformation correlated with risk factors for the glaucomatous optic neuropathy, but these correlations varied depending on the diagnosis. The role of pulsatile neuro-peripapillary retinal deformation in the pathophysiology of OAG remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.