Increasing evidence implicates the protease-activated receptor-1 (PAR-1) as a contributor to tumor invasion and metastasis of human melanoma. Here we demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. We also provide evidence that an inverse correlation exists between the expression of activator protein-2␣ (
Our results have significant clinical implications. Treatment of melanoma patients with dacarbazine could select for a more aggressive melanoma phenotype. We propose that combination treatment with anti-VEGF/IL-8 or MEK inhibitors may potentiate the therapeutic effects of dacarbazine.
Activator protein-2␣ (AP-2) is a transcription factor that regulates proliferation and differentiation in mammalian cells. We have shown previously that although AP-2 is expressed highly in normal prostatic epithelium, its expression is lost in high-grade prostatic intraepithelial neoplasia and prostate cancer, suggesting that loss of AP-2 plays a role in prostate cancer development. We demonstrate that forced AP-2 expression in the prostate cancer cell line LNCaP-LN3 (AP-2 negative) inhibited dramatically tumor incidence in nude mice. To identify the genes that might have been responsible for this effect, we used microchip expression array. We found several genes known to be involved in malignancy were deregulated, including the vascular endothelial growth factor (VEGF) gene. Because VEGF was down-regulated by 14.7-fold in the AP-2-transfected cells and because it is a major angiogenic factor in prostate cancer development and progression, we chose to examine the AP-2-VEGF interaction. Our evidence suggests that AP-2 repressed transcriptionally the VEGF promoter by competing with the transcriptional activator Sp3. Loss of AP-2 in prostate cancer cells reduced the AP-2:Sp3 ratio and activated VEGF expression. AP-2 acts as a tumor-suppressor gene in prostate cancer. Elucidating the molecular events resulting from loss of AP-2 in the prostate epithelium has implications for the understanding and prevention of the onset of prostate cancer.
One of the major targets for breast cancer therapy is the epidermal growth factor receptor (EGFR) and related receptors, which signal via different signal transduction pathways including the mitogen-activated protein kinase (MAPK) pathway. This study determined whether there is a correlation between EGFR/HER2 status and MAPK (ERK1/2) phosphorylation in breast cancer cells, and how this affects the response to an inhibitor of the receptors. Expression of EGFR, HER2 and phosphorylated ERK1/2 were measured by immunoblotting in a panel of breast cancer cell lines. Several lines expressed high levels of pERK1/2, with no obvious correlation with the level of EGFR/HER2. The EGFR tyrosine kinase inhibitor PKI166 inhibited growth and induced apoptosis in some cells with high levels of growth factor receptors (MDA-MB-468, SUM149, SKBR3), but was less effective in cells that also had high basal ERK1/2 activity (MDA-MB-231). The combination of an inhibitor of MAPK signalling (U0126) and PKI166 produced significantly more inhibition and apoptosis than either agent alone. This suggests that constitutive activation of the MAPK pathway may bypass inhibition of EGFR/HER2 tyrosine kinases, and lead to insensitivity to agents targeting the receptors. However, inhibiting both EGFR/ HER2 and MAPK signalling can result in significant growth inhibition and apoptosis of EGFR-expressing breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.